Solve for x
x=4
x=-4
Graph
Share
Copied to clipboard
\left(\sqrt{x+5}+2\right)^{2}=\left(\sqrt{2x+17}\right)^{2}
Square both sides of the equation.
\left(\sqrt{x+5}\right)^{2}+4\sqrt{x+5}+4=\left(\sqrt{2x+17}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{x+5}+2\right)^{2}.
x+5+4\sqrt{x+5}+4=\left(\sqrt{2x+17}\right)^{2}
Calculate \sqrt{x+5} to the power of 2 and get x+5.
x+9+4\sqrt{x+5}=\left(\sqrt{2x+17}\right)^{2}
Add 5 and 4 to get 9.
x+9+4\sqrt{x+5}=2x+17
Calculate \sqrt{2x+17} to the power of 2 and get 2x+17.
4\sqrt{x+5}=2x+17-\left(x+9\right)
Subtract x+9 from both sides of the equation.
4\sqrt{x+5}=2x+17-x-9
To find the opposite of x+9, find the opposite of each term.
4\sqrt{x+5}=x+17-9
Combine 2x and -x to get x.
4\sqrt{x+5}=x+8
Subtract 9 from 17 to get 8.
\left(4\sqrt{x+5}\right)^{2}=\left(x+8\right)^{2}
Square both sides of the equation.
4^{2}\left(\sqrt{x+5}\right)^{2}=\left(x+8\right)^{2}
Expand \left(4\sqrt{x+5}\right)^{2}.
16\left(\sqrt{x+5}\right)^{2}=\left(x+8\right)^{2}
Calculate 4 to the power of 2 and get 16.
16\left(x+5\right)=\left(x+8\right)^{2}
Calculate \sqrt{x+5} to the power of 2 and get x+5.
16x+80=\left(x+8\right)^{2}
Use the distributive property to multiply 16 by x+5.
16x+80=x^{2}+16x+64
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+8\right)^{2}.
16x+80-x^{2}=16x+64
Subtract x^{2} from both sides.
16x+80-x^{2}-16x=64
Subtract 16x from both sides.
80-x^{2}=64
Combine 16x and -16x to get 0.
-x^{2}=64-80
Subtract 80 from both sides.
-x^{2}=-16
Subtract 80 from 64 to get -16.
x^{2}=\frac{-16}{-1}
Divide both sides by -1.
x^{2}=16
Fraction \frac{-16}{-1} can be simplified to 16 by removing the negative sign from both the numerator and the denominator.
x=4 x=-4
Take the square root of both sides of the equation.
\sqrt{4+5}+2=\sqrt{2\times 4+17}
Substitute 4 for x in the equation \sqrt{x+5}+2=\sqrt{2x+17}.
5=5
Simplify. The value x=4 satisfies the equation.
\sqrt{-4+5}+2=\sqrt{2\left(-4\right)+17}
Substitute -4 for x in the equation \sqrt{x+5}+2=\sqrt{2x+17}.
3=3
Simplify. The value x=-4 satisfies the equation.
x=4 x=-4
List all solutions of \sqrt{x+5}+2=\sqrt{2x+17}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}