Solve for x
x=-4
Graph
Share
Copied to clipboard
\sqrt{x+5}=1-\sqrt{2x+8}
Subtract \sqrt{2x+8} from both sides of the equation.
\left(\sqrt{x+5}\right)^{2}=\left(1-\sqrt{2x+8}\right)^{2}
Square both sides of the equation.
x+5=\left(1-\sqrt{2x+8}\right)^{2}
Calculate \sqrt{x+5} to the power of 2 and get x+5.
x+5=1-2\sqrt{2x+8}+\left(\sqrt{2x+8}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-\sqrt{2x+8}\right)^{2}.
x+5=1-2\sqrt{2x+8}+2x+8
Calculate \sqrt{2x+8} to the power of 2 and get 2x+8.
x+5=9-2\sqrt{2x+8}+2x
Add 1 and 8 to get 9.
x+5-\left(9+2x\right)=-2\sqrt{2x+8}
Subtract 9+2x from both sides of the equation.
x+5-9-2x=-2\sqrt{2x+8}
To find the opposite of 9+2x, find the opposite of each term.
x-4-2x=-2\sqrt{2x+8}
Subtract 9 from 5 to get -4.
-x-4=-2\sqrt{2x+8}
Combine x and -2x to get -x.
\left(-x-4\right)^{2}=\left(-2\sqrt{2x+8}\right)^{2}
Square both sides of the equation.
x^{2}+8x+16=\left(-2\sqrt{2x+8}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-x-4\right)^{2}.
x^{2}+8x+16=\left(-2\right)^{2}\left(\sqrt{2x+8}\right)^{2}
Expand \left(-2\sqrt{2x+8}\right)^{2}.
x^{2}+8x+16=4\left(\sqrt{2x+8}\right)^{2}
Calculate -2 to the power of 2 and get 4.
x^{2}+8x+16=4\left(2x+8\right)
Calculate \sqrt{2x+8} to the power of 2 and get 2x+8.
x^{2}+8x+16=8x+32
Use the distributive property to multiply 4 by 2x+8.
x^{2}+8x+16-8x=32
Subtract 8x from both sides.
x^{2}+16=32
Combine 8x and -8x to get 0.
x^{2}+16-32=0
Subtract 32 from both sides.
x^{2}-16=0
Subtract 32 from 16 to get -16.
\left(x-4\right)\left(x+4\right)=0
Consider x^{2}-16. Rewrite x^{2}-16 as x^{2}-4^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=4 x=-4
To find equation solutions, solve x-4=0 and x+4=0.
\sqrt{4+5}+\sqrt{2\times 4+8}=1
Substitute 4 for x in the equation \sqrt{x+5}+\sqrt{2x+8}=1.
7=1
Simplify. The value x=4 does not satisfy the equation.
\sqrt{-4+5}+\sqrt{2\left(-4\right)+8}=1
Substitute -4 for x in the equation \sqrt{x+5}+\sqrt{2x+8}=1.
1=1
Simplify. The value x=-4 satisfies the equation.
x=-4
Equation \sqrt{x+5}=-\sqrt{2x+8}+1 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}