Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{x+5}=1-\sqrt{2x+8}
Subtract \sqrt{2x+8} from both sides of the equation.
\left(\sqrt{x+5}\right)^{2}=\left(1-\sqrt{2x+8}\right)^{2}
Square both sides of the equation.
x+5=\left(1-\sqrt{2x+8}\right)^{2}
Calculate \sqrt{x+5} to the power of 2 and get x+5.
x+5=1-2\sqrt{2x+8}+\left(\sqrt{2x+8}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-\sqrt{2x+8}\right)^{2}.
x+5=1-2\sqrt{2x+8}+2x+8
Calculate \sqrt{2x+8} to the power of 2 and get 2x+8.
x+5=9-2\sqrt{2x+8}+2x
Add 1 and 8 to get 9.
x+5-\left(9+2x\right)=-2\sqrt{2x+8}
Subtract 9+2x from both sides of the equation.
x+5-9-2x=-2\sqrt{2x+8}
To find the opposite of 9+2x, find the opposite of each term.
x-4-2x=-2\sqrt{2x+8}
Subtract 9 from 5 to get -4.
-x-4=-2\sqrt{2x+8}
Combine x and -2x to get -x.
\left(-x-4\right)^{2}=\left(-2\sqrt{2x+8}\right)^{2}
Square both sides of the equation.
x^{2}+8x+16=\left(-2\sqrt{2x+8}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-x-4\right)^{2}.
x^{2}+8x+16=\left(-2\right)^{2}\left(\sqrt{2x+8}\right)^{2}
Expand \left(-2\sqrt{2x+8}\right)^{2}.
x^{2}+8x+16=4\left(\sqrt{2x+8}\right)^{2}
Calculate -2 to the power of 2 and get 4.
x^{2}+8x+16=4\left(2x+8\right)
Calculate \sqrt{2x+8} to the power of 2 and get 2x+8.
x^{2}+8x+16=8x+32
Use the distributive property to multiply 4 by 2x+8.
x^{2}+8x+16-8x=32
Subtract 8x from both sides.
x^{2}+16=32
Combine 8x and -8x to get 0.
x^{2}+16-32=0
Subtract 32 from both sides.
x^{2}-16=0
Subtract 32 from 16 to get -16.
\left(x-4\right)\left(x+4\right)=0
Consider x^{2}-16. Rewrite x^{2}-16 as x^{2}-4^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=4 x=-4
To find equation solutions, solve x-4=0 and x+4=0.
\sqrt{4+5}+\sqrt{2\times 4+8}=1
Substitute 4 for x in the equation \sqrt{x+5}+\sqrt{2x+8}=1.
7=1
Simplify. The value x=4 does not satisfy the equation.
\sqrt{-4+5}+\sqrt{2\left(-4\right)+8}=1
Substitute -4 for x in the equation \sqrt{x+5}+\sqrt{2x+8}=1.
1=1
Simplify. The value x=-4 satisfies the equation.
x=-4
Equation \sqrt{x+5}=-\sqrt{2x+8}+1 has a unique solution.