Solve for x
x=45
Graph
Share
Copied to clipboard
\left(\sqrt{x+4}\right)^{2}=\left(1+\sqrt{x-9}\right)^{2}
Square both sides of the equation.
x+4=\left(1+\sqrt{x-9}\right)^{2}
Calculate \sqrt{x+4} to the power of 2 and get x+4.
x+4=1+2\sqrt{x-9}+\left(\sqrt{x-9}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{x-9}\right)^{2}.
x+4=1+2\sqrt{x-9}+x-9
Calculate \sqrt{x-9} to the power of 2 and get x-9.
x+4=-8+2\sqrt{x-9}+x
Subtract 9 from 1 to get -8.
x+4-2\sqrt{x-9}=-8+x
Subtract 2\sqrt{x-9} from both sides.
x+4-2\sqrt{x-9}-x=-8
Subtract x from both sides.
4-2\sqrt{x-9}=-8
Combine x and -x to get 0.
-2\sqrt{x-9}=-8-4
Subtract 4 from both sides.
-2\sqrt{x-9}=-12
Subtract 4 from -8 to get -12.
\sqrt{x-9}=\frac{-12}{-2}
Divide both sides by -2.
\sqrt{x-9}=6
Divide -12 by -2 to get 6.
x-9=36
Square both sides of the equation.
x-9-\left(-9\right)=36-\left(-9\right)
Add 9 to both sides of the equation.
x=36-\left(-9\right)
Subtracting -9 from itself leaves 0.
x=45
Subtract -9 from 36.
\sqrt{45+4}=1+\sqrt{45-9}
Substitute 45 for x in the equation \sqrt{x+4}=1+\sqrt{x-9}.
7=7
Simplify. The value x=45 satisfies the equation.
x=45
Equation \sqrt{x+4}=\sqrt{x-9}+1 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}