Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{x+4}=5-\sqrt{x-1}
Subtract \sqrt{x-1} from both sides of the equation.
\left(\sqrt{x+4}\right)^{2}=\left(5-\sqrt{x-1}\right)^{2}
Square both sides of the equation.
x+4=\left(5-\sqrt{x-1}\right)^{2}
Calculate \sqrt{x+4} to the power of 2 and get x+4.
x+4=25-10\sqrt{x-1}+\left(\sqrt{x-1}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-\sqrt{x-1}\right)^{2}.
x+4=25-10\sqrt{x-1}+x-1
Calculate \sqrt{x-1} to the power of 2 and get x-1.
x+4=24-10\sqrt{x-1}+x
Subtract 1 from 25 to get 24.
x+4+10\sqrt{x-1}=24+x
Add 10\sqrt{x-1} to both sides.
x+4+10\sqrt{x-1}-x=24
Subtract x from both sides.
4+10\sqrt{x-1}=24
Combine x and -x to get 0.
10\sqrt{x-1}=24-4
Subtract 4 from both sides.
10\sqrt{x-1}=20
Subtract 4 from 24 to get 20.
\sqrt{x-1}=\frac{20}{10}
Divide both sides by 10.
\sqrt{x-1}=2
Divide 20 by 10 to get 2.
x-1=4
Square both sides of the equation.
x-1-\left(-1\right)=4-\left(-1\right)
Add 1 to both sides of the equation.
x=4-\left(-1\right)
Subtracting -1 from itself leaves 0.
x=5
Subtract -1 from 4.
\sqrt{5+4}+\sqrt{5-1}=5
Substitute 5 for x in the equation \sqrt{x+4}+\sqrt{x-1}=5.
5=5
Simplify. The value x=5 satisfies the equation.
x=5
Equation \sqrt{x+4}=-\sqrt{x-1}+5 has a unique solution.