Solve for x
x=5
Graph
Share
Copied to clipboard
\left(\sqrt{x+4}+\sqrt{2x-1}\right)^{2}=\left(3\sqrt{x-1}\right)^{2}
Square both sides of the equation.
\left(\sqrt{x+4}\right)^{2}+2\sqrt{x+4}\sqrt{2x-1}+\left(\sqrt{2x-1}\right)^{2}=\left(3\sqrt{x-1}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{x+4}+\sqrt{2x-1}\right)^{2}.
x+4+2\sqrt{x+4}\sqrt{2x-1}+\left(\sqrt{2x-1}\right)^{2}=\left(3\sqrt{x-1}\right)^{2}
Calculate \sqrt{x+4} to the power of 2 and get x+4.
x+4+2\sqrt{x+4}\sqrt{2x-1}+2x-1=\left(3\sqrt{x-1}\right)^{2}
Calculate \sqrt{2x-1} to the power of 2 and get 2x-1.
3x+4+2\sqrt{x+4}\sqrt{2x-1}-1=\left(3\sqrt{x-1}\right)^{2}
Combine x and 2x to get 3x.
3x+3+2\sqrt{x+4}\sqrt{2x-1}=\left(3\sqrt{x-1}\right)^{2}
Subtract 1 from 4 to get 3.
3x+3+2\sqrt{x+4}\sqrt{2x-1}=3^{2}\left(\sqrt{x-1}\right)^{2}
Expand \left(3\sqrt{x-1}\right)^{2}.
3x+3+2\sqrt{x+4}\sqrt{2x-1}=9\left(\sqrt{x-1}\right)^{2}
Calculate 3 to the power of 2 and get 9.
3x+3+2\sqrt{x+4}\sqrt{2x-1}=9\left(x-1\right)
Calculate \sqrt{x-1} to the power of 2 and get x-1.
3x+3+2\sqrt{x+4}\sqrt{2x-1}=9x-9
Use the distributive property to multiply 9 by x-1.
2\sqrt{x+4}\sqrt{2x-1}=9x-9-\left(3x+3\right)
Subtract 3x+3 from both sides of the equation.
2\sqrt{x+4}\sqrt{2x-1}=9x-9-3x-3
To find the opposite of 3x+3, find the opposite of each term.
2\sqrt{x+4}\sqrt{2x-1}=6x-9-3
Combine 9x and -3x to get 6x.
2\sqrt{x+4}\sqrt{2x-1}=6x-12
Subtract 3 from -9 to get -12.
\left(2\sqrt{x+4}\sqrt{2x-1}\right)^{2}=\left(6x-12\right)^{2}
Square both sides of the equation.
2^{2}\left(\sqrt{x+4}\right)^{2}\left(\sqrt{2x-1}\right)^{2}=\left(6x-12\right)^{2}
Expand \left(2\sqrt{x+4}\sqrt{2x-1}\right)^{2}.
4\left(\sqrt{x+4}\right)^{2}\left(\sqrt{2x-1}\right)^{2}=\left(6x-12\right)^{2}
Calculate 2 to the power of 2 and get 4.
4\left(x+4\right)\left(\sqrt{2x-1}\right)^{2}=\left(6x-12\right)^{2}
Calculate \sqrt{x+4} to the power of 2 and get x+4.
4\left(x+4\right)\left(2x-1\right)=\left(6x-12\right)^{2}
Calculate \sqrt{2x-1} to the power of 2 and get 2x-1.
\left(4x+16\right)\left(2x-1\right)=\left(6x-12\right)^{2}
Use the distributive property to multiply 4 by x+4.
8x^{2}-4x+32x-16=\left(6x-12\right)^{2}
Apply the distributive property by multiplying each term of 4x+16 by each term of 2x-1.
8x^{2}+28x-16=\left(6x-12\right)^{2}
Combine -4x and 32x to get 28x.
8x^{2}+28x-16=36x^{2}-144x+144
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6x-12\right)^{2}.
8x^{2}+28x-16-36x^{2}=-144x+144
Subtract 36x^{2} from both sides.
-28x^{2}+28x-16=-144x+144
Combine 8x^{2} and -36x^{2} to get -28x^{2}.
-28x^{2}+28x-16+144x=144
Add 144x to both sides.
-28x^{2}+172x-16=144
Combine 28x and 144x to get 172x.
-28x^{2}+172x-16-144=0
Subtract 144 from both sides.
-28x^{2}+172x-160=0
Subtract 144 from -16 to get -160.
x=\frac{-172±\sqrt{172^{2}-4\left(-28\right)\left(-160\right)}}{2\left(-28\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -28 for a, 172 for b, and -160 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-172±\sqrt{29584-4\left(-28\right)\left(-160\right)}}{2\left(-28\right)}
Square 172.
x=\frac{-172±\sqrt{29584+112\left(-160\right)}}{2\left(-28\right)}
Multiply -4 times -28.
x=\frac{-172±\sqrt{29584-17920}}{2\left(-28\right)}
Multiply 112 times -160.
x=\frac{-172±\sqrt{11664}}{2\left(-28\right)}
Add 29584 to -17920.
x=\frac{-172±108}{2\left(-28\right)}
Take the square root of 11664.
x=\frac{-172±108}{-56}
Multiply 2 times -28.
x=-\frac{64}{-56}
Now solve the equation x=\frac{-172±108}{-56} when ± is plus. Add -172 to 108.
x=\frac{8}{7}
Reduce the fraction \frac{-64}{-56} to lowest terms by extracting and canceling out 8.
x=-\frac{280}{-56}
Now solve the equation x=\frac{-172±108}{-56} when ± is minus. Subtract 108 from -172.
x=5
Divide -280 by -56.
x=\frac{8}{7} x=5
The equation is now solved.
\sqrt{\frac{8}{7}+4}+\sqrt{2\times \frac{8}{7}-1}=3\sqrt{\frac{8}{7}-1}
Substitute \frac{8}{7} for x in the equation \sqrt{x+4}+\sqrt{2x-1}=3\sqrt{x-1}.
\frac{9}{7}\times 7^{\frac{1}{2}}=\frac{3}{7}\times 7^{\frac{1}{2}}
Simplify. The value x=\frac{8}{7} does not satisfy the equation.
\sqrt{5+4}+\sqrt{2\times 5-1}=3\sqrt{5-1}
Substitute 5 for x in the equation \sqrt{x+4}+\sqrt{2x-1}=3\sqrt{x-1}.
6=6
Simplify. The value x=5 satisfies the equation.
x=5
Equation \sqrt{x+4}+\sqrt{2x-1}=3\sqrt{x-1} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}