Solve for x
x=6
Graph
Share
Copied to clipboard
\sqrt{x+3}=2+\sqrt{x-5}
Subtract -\sqrt{x-5} from both sides of the equation.
\left(\sqrt{x+3}\right)^{2}=\left(2+\sqrt{x-5}\right)^{2}
Square both sides of the equation.
x+3=\left(2+\sqrt{x-5}\right)^{2}
Calculate \sqrt{x+3} to the power of 2 and get x+3.
x+3=4+4\sqrt{x-5}+\left(\sqrt{x-5}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{x-5}\right)^{2}.
x+3=4+4\sqrt{x-5}+x-5
Calculate \sqrt{x-5} to the power of 2 and get x-5.
x+3=-1+4\sqrt{x-5}+x
Subtract 5 from 4 to get -1.
x+3-4\sqrt{x-5}=-1+x
Subtract 4\sqrt{x-5} from both sides.
x+3-4\sqrt{x-5}-x=-1
Subtract x from both sides.
3-4\sqrt{x-5}=-1
Combine x and -x to get 0.
-4\sqrt{x-5}=-1-3
Subtract 3 from both sides.
-4\sqrt{x-5}=-4
Subtract 3 from -1 to get -4.
\sqrt{x-5}=\frac{-4}{-4}
Divide both sides by -4.
\sqrt{x-5}=1
Divide -4 by -4 to get 1.
x-5=1
Square both sides of the equation.
x-5-\left(-5\right)=1-\left(-5\right)
Add 5 to both sides of the equation.
x=1-\left(-5\right)
Subtracting -5 from itself leaves 0.
x=6
Subtract -5 from 1.
\sqrt{6+3}-\sqrt{6-5}=2
Substitute 6 for x in the equation \sqrt{x+3}-\sqrt{x-5}=2.
2=2
Simplify. The value x=6 satisfies the equation.
x=6
Equation \sqrt{x+3}=\sqrt{x-5}+2 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}