Solve for x
x=\frac{\sqrt{281}-9}{50}\approx 0.155261092
Graph
Share
Copied to clipboard
\left(\sqrt{x+3}\right)^{2}=\left(5x+1\right)^{2}
Square both sides of the equation.
x+3=\left(5x+1\right)^{2}
Calculate \sqrt{x+3} to the power of 2 and get x+3.
x+3=25x^{2}+10x+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(5x+1\right)^{2}.
x+3-25x^{2}=10x+1
Subtract 25x^{2} from both sides.
x+3-25x^{2}-10x=1
Subtract 10x from both sides.
-9x+3-25x^{2}=1
Combine x and -10x to get -9x.
-9x+3-25x^{2}-1=0
Subtract 1 from both sides.
-9x+2-25x^{2}=0
Subtract 1 from 3 to get 2.
-25x^{2}-9x+2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\left(-25\right)\times 2}}{2\left(-25\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -25 for a, -9 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-9\right)±\sqrt{81-4\left(-25\right)\times 2}}{2\left(-25\right)}
Square -9.
x=\frac{-\left(-9\right)±\sqrt{81+100\times 2}}{2\left(-25\right)}
Multiply -4 times -25.
x=\frac{-\left(-9\right)±\sqrt{81+200}}{2\left(-25\right)}
Multiply 100 times 2.
x=\frac{-\left(-9\right)±\sqrt{281}}{2\left(-25\right)}
Add 81 to 200.
x=\frac{9±\sqrt{281}}{2\left(-25\right)}
The opposite of -9 is 9.
x=\frac{9±\sqrt{281}}{-50}
Multiply 2 times -25.
x=\frac{\sqrt{281}+9}{-50}
Now solve the equation x=\frac{9±\sqrt{281}}{-50} when ± is plus. Add 9 to \sqrt{281}.
x=\frac{-\sqrt{281}-9}{50}
Divide 9+\sqrt{281} by -50.
x=\frac{9-\sqrt{281}}{-50}
Now solve the equation x=\frac{9±\sqrt{281}}{-50} when ± is minus. Subtract \sqrt{281} from 9.
x=\frac{\sqrt{281}-9}{50}
Divide 9-\sqrt{281} by -50.
x=\frac{-\sqrt{281}-9}{50} x=\frac{\sqrt{281}-9}{50}
The equation is now solved.
\sqrt{\frac{-\sqrt{281}-9}{50}+3}=5\times \frac{-\sqrt{281}-9}{50}+1
Substitute \frac{-\sqrt{281}-9}{50} for x in the equation \sqrt{x+3}=5x+1.
-\left(\frac{1}{10}-\frac{1}{10}\times 281^{\frac{1}{2}}\right)=-\frac{1}{10}\times 281^{\frac{1}{2}}+\frac{1}{10}
Simplify. The value x=\frac{-\sqrt{281}-9}{50} does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{\frac{\sqrt{281}-9}{50}+3}=5\times \frac{\sqrt{281}-9}{50}+1
Substitute \frac{\sqrt{281}-9}{50} for x in the equation \sqrt{x+3}=5x+1.
\frac{1}{10}+\frac{1}{10}\times 281^{\frac{1}{2}}=\frac{1}{10}\times 281^{\frac{1}{2}}+\frac{1}{10}
Simplify. The value x=\frac{\sqrt{281}-9}{50} satisfies the equation.
x=\frac{\sqrt{281}-9}{50}
Equation \sqrt{x+3}=5x+1 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}