Solve for x
x=-2
Graph
Share
Copied to clipboard
\left(\sqrt{x+3}+2\right)^{2}=\left(\sqrt{x+11}\right)^{2}
Square both sides of the equation.
\left(\sqrt{x+3}\right)^{2}+4\sqrt{x+3}+4=\left(\sqrt{x+11}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{x+3}+2\right)^{2}.
x+3+4\sqrt{x+3}+4=\left(\sqrt{x+11}\right)^{2}
Calculate \sqrt{x+3} to the power of 2 and get x+3.
x+7+4\sqrt{x+3}=\left(\sqrt{x+11}\right)^{2}
Add 3 and 4 to get 7.
x+7+4\sqrt{x+3}=x+11
Calculate \sqrt{x+11} to the power of 2 and get x+11.
x+7+4\sqrt{x+3}-x=11
Subtract x from both sides.
7+4\sqrt{x+3}=11
Combine x and -x to get 0.
4\sqrt{x+3}=11-7
Subtract 7 from both sides.
4\sqrt{x+3}=4
Subtract 7 from 11 to get 4.
\sqrt{x+3}=\frac{4}{4}
Divide both sides by 4.
\sqrt{x+3}=1
Divide 4 by 4 to get 1.
x+3=1
Square both sides of the equation.
x+3-3=1-3
Subtract 3 from both sides of the equation.
x=1-3
Subtracting 3 from itself leaves 0.
x=-2
Subtract 3 from 1.
\sqrt{-2+3}+2=\sqrt{-2+11}
Substitute -2 for x in the equation \sqrt{x+3}+2=\sqrt{x+11}.
3=3
Simplify. The value x=-2 satisfies the equation.
x=-2
Equation \sqrt{x+3}+2=\sqrt{x+11} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}