Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{x+3}=6-\sqrt{x-3}
Subtract \sqrt{x-3} from both sides of the equation.
\left(\sqrt{x+3}\right)^{2}=\left(6-\sqrt{x-3}\right)^{2}
Square both sides of the equation.
x+3=\left(6-\sqrt{x-3}\right)^{2}
Calculate \sqrt{x+3} to the power of 2 and get x+3.
x+3=36-12\sqrt{x-3}+\left(\sqrt{x-3}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6-\sqrt{x-3}\right)^{2}.
x+3=36-12\sqrt{x-3}+x-3
Calculate \sqrt{x-3} to the power of 2 and get x-3.
x+3=33-12\sqrt{x-3}+x
Subtract 3 from 36 to get 33.
x+3+12\sqrt{x-3}=33+x
Add 12\sqrt{x-3} to both sides.
x+3+12\sqrt{x-3}-x=33
Subtract x from both sides.
3+12\sqrt{x-3}=33
Combine x and -x to get 0.
12\sqrt{x-3}=33-3
Subtract 3 from both sides.
12\sqrt{x-3}=30
Subtract 3 from 33 to get 30.
\sqrt{x-3}=\frac{30}{12}
Divide both sides by 12.
\sqrt{x-3}=\frac{5}{2}
Reduce the fraction \frac{30}{12} to lowest terms by extracting and canceling out 6.
x-3=\frac{25}{4}
Square both sides of the equation.
x-3-\left(-3\right)=\frac{25}{4}-\left(-3\right)
Add 3 to both sides of the equation.
x=\frac{25}{4}-\left(-3\right)
Subtracting -3 from itself leaves 0.
x=\frac{37}{4}
Subtract -3 from \frac{25}{4}.
\sqrt{\frac{37}{4}+3}+\sqrt{\frac{37}{4}-3}=6
Substitute \frac{37}{4} for x in the equation \sqrt{x+3}+\sqrt{x-3}=6.
6=6
Simplify. The value x=\frac{37}{4} satisfies the equation.
x=\frac{37}{4}
Equation \sqrt{x+3}=-\sqrt{x-3}+6 has a unique solution.