Solve for x
x = \frac{37}{4} = 9\frac{1}{4} = 9.25
Graph
Share
Copied to clipboard
\sqrt{x+3}=6-\sqrt{x-3}
Subtract \sqrt{x-3} from both sides of the equation.
\left(\sqrt{x+3}\right)^{2}=\left(6-\sqrt{x-3}\right)^{2}
Square both sides of the equation.
x+3=\left(6-\sqrt{x-3}\right)^{2}
Calculate \sqrt{x+3} to the power of 2 and get x+3.
x+3=36-12\sqrt{x-3}+\left(\sqrt{x-3}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6-\sqrt{x-3}\right)^{2}.
x+3=36-12\sqrt{x-3}+x-3
Calculate \sqrt{x-3} to the power of 2 and get x-3.
x+3=33-12\sqrt{x-3}+x
Subtract 3 from 36 to get 33.
x+3+12\sqrt{x-3}=33+x
Add 12\sqrt{x-3} to both sides.
x+3+12\sqrt{x-3}-x=33
Subtract x from both sides.
3+12\sqrt{x-3}=33
Combine x and -x to get 0.
12\sqrt{x-3}=33-3
Subtract 3 from both sides.
12\sqrt{x-3}=30
Subtract 3 from 33 to get 30.
\sqrt{x-3}=\frac{30}{12}
Divide both sides by 12.
\sqrt{x-3}=\frac{5}{2}
Reduce the fraction \frac{30}{12} to lowest terms by extracting and canceling out 6.
x-3=\frac{25}{4}
Square both sides of the equation.
x-3-\left(-3\right)=\frac{25}{4}-\left(-3\right)
Add 3 to both sides of the equation.
x=\frac{25}{4}-\left(-3\right)
Subtracting -3 from itself leaves 0.
x=\frac{37}{4}
Subtract -3 from \frac{25}{4}.
\sqrt{\frac{37}{4}+3}+\sqrt{\frac{37}{4}-3}=6
Substitute \frac{37}{4} for x in the equation \sqrt{x+3}+\sqrt{x-3}=6.
6=6
Simplify. The value x=\frac{37}{4} satisfies the equation.
x=\frac{37}{4}
Equation \sqrt{x+3}=-\sqrt{x-3}+6 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}