Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{x+2}+\sqrt{18-x}\right)^{2}=\left(\sqrt{10+13x}\right)^{2}
Square both sides of the equation.
\left(\sqrt{x+2}\right)^{2}+2\sqrt{x+2}\sqrt{18-x}+\left(\sqrt{18-x}\right)^{2}=\left(\sqrt{10+13x}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{x+2}+\sqrt{18-x}\right)^{2}.
x+2+2\sqrt{x+2}\sqrt{18-x}+\left(\sqrt{18-x}\right)^{2}=\left(\sqrt{10+13x}\right)^{2}
Calculate \sqrt{x+2} to the power of 2 and get x+2.
x+2+2\sqrt{x+2}\sqrt{18-x}+18-x=\left(\sqrt{10+13x}\right)^{2}
Calculate \sqrt{18-x} to the power of 2 and get 18-x.
x+20+2\sqrt{x+2}\sqrt{18-x}-x=\left(\sqrt{10+13x}\right)^{2}
Add 2 and 18 to get 20.
20+2\sqrt{x+2}\sqrt{18-x}=\left(\sqrt{10+13x}\right)^{2}
Combine x and -x to get 0.
20+2\sqrt{x+2}\sqrt{18-x}=10+13x
Calculate \sqrt{10+13x} to the power of 2 and get 10+13x.
2\sqrt{x+2}\sqrt{18-x}=10+13x-20
Subtract 20 from both sides of the equation.
2\sqrt{x+2}\sqrt{18-x}=-10+13x
Subtract 20 from 10 to get -10.
\left(2\sqrt{x+2}\sqrt{18-x}\right)^{2}=\left(-10+13x\right)^{2}
Square both sides of the equation.
2^{2}\left(\sqrt{x+2}\right)^{2}\left(\sqrt{18-x}\right)^{2}=\left(-10+13x\right)^{2}
Expand \left(2\sqrt{x+2}\sqrt{18-x}\right)^{2}.
4\left(\sqrt{x+2}\right)^{2}\left(\sqrt{18-x}\right)^{2}=\left(-10+13x\right)^{2}
Calculate 2 to the power of 2 and get 4.
4\left(x+2\right)\left(\sqrt{18-x}\right)^{2}=\left(-10+13x\right)^{2}
Calculate \sqrt{x+2} to the power of 2 and get x+2.
4\left(x+2\right)\left(18-x\right)=\left(-10+13x\right)^{2}
Calculate \sqrt{18-x} to the power of 2 and get 18-x.
\left(4x+8\right)\left(18-x\right)=\left(-10+13x\right)^{2}
Use the distributive property to multiply 4 by x+2.
72x-4x^{2}+144-8x=\left(-10+13x\right)^{2}
Apply the distributive property by multiplying each term of 4x+8 by each term of 18-x.
64x-4x^{2}+144=\left(-10+13x\right)^{2}
Combine 72x and -8x to get 64x.
64x-4x^{2}+144=100-260x+169x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-10+13x\right)^{2}.
64x-4x^{2}+144-100=-260x+169x^{2}
Subtract 100 from both sides.
64x-4x^{2}+44=-260x+169x^{2}
Subtract 100 from 144 to get 44.
64x-4x^{2}+44+260x=169x^{2}
Add 260x to both sides.
324x-4x^{2}+44=169x^{2}
Combine 64x and 260x to get 324x.
324x-4x^{2}+44-169x^{2}=0
Subtract 169x^{2} from both sides.
324x-173x^{2}+44=0
Combine -4x^{2} and -169x^{2} to get -173x^{2}.
-173x^{2}+324x+44=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=324 ab=-173\times 44=-7612
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -173x^{2}+ax+bx+44. To find a and b, set up a system to be solved.
-1,7612 -2,3806 -4,1903 -11,692 -22,346 -44,173
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -7612.
-1+7612=7611 -2+3806=3804 -4+1903=1899 -11+692=681 -22+346=324 -44+173=129
Calculate the sum for each pair.
a=346 b=-22
The solution is the pair that gives sum 324.
\left(-173x^{2}+346x\right)+\left(-22x+44\right)
Rewrite -173x^{2}+324x+44 as \left(-173x^{2}+346x\right)+\left(-22x+44\right).
173x\left(-x+2\right)+22\left(-x+2\right)
Factor out 173x in the first and 22 in the second group.
\left(-x+2\right)\left(173x+22\right)
Factor out common term -x+2 by using distributive property.
x=2 x=-\frac{22}{173}
To find equation solutions, solve -x+2=0 and 173x+22=0.
\sqrt{2+2}+\sqrt{18-2}=\sqrt{10+13\times 2}
Substitute 2 for x in the equation \sqrt{x+2}+\sqrt{18-x}=\sqrt{10+13x}.
6=6
Simplify. The value x=2 satisfies the equation.
\sqrt{-\frac{22}{173}+2}+\sqrt{18-\left(-\frac{22}{173}\right)}=\sqrt{10+13\left(-\frac{22}{173}\right)}
Substitute -\frac{22}{173} for x in the equation \sqrt{x+2}+\sqrt{18-x}=\sqrt{10+13x}.
\frac{74}{173}\times 173^{\frac{1}{2}}=\frac{38}{173}\times 173^{\frac{1}{2}}
Simplify. The value x=-\frac{22}{173} does not satisfy the equation.
\sqrt{2+2}+\sqrt{18-2}=\sqrt{10+13\times 2}
Substitute 2 for x in the equation \sqrt{x+2}+\sqrt{18-x}=\sqrt{10+13x}.
6=6
Simplify. The value x=2 satisfies the equation.
x=2
Equation \sqrt{x+2}+\sqrt{18-x}=\sqrt{13x+10} has a unique solution.