Solve for x
x=6
Graph
Share
Copied to clipboard
\sqrt{x+10}=1+\sqrt{15-x}
Subtract -\sqrt{15-x} from both sides of the equation.
\left(\sqrt{x+10}\right)^{2}=\left(1+\sqrt{15-x}\right)^{2}
Square both sides of the equation.
x+10=\left(1+\sqrt{15-x}\right)^{2}
Calculate \sqrt{x+10} to the power of 2 and get x+10.
x+10=1+2\sqrt{15-x}+\left(\sqrt{15-x}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{15-x}\right)^{2}.
x+10=1+2\sqrt{15-x}+15-x
Calculate \sqrt{15-x} to the power of 2 and get 15-x.
x+10=16+2\sqrt{15-x}-x
Add 1 and 15 to get 16.
x+10-\left(16-x\right)=2\sqrt{15-x}
Subtract 16-x from both sides of the equation.
x+10-16+x=2\sqrt{15-x}
To find the opposite of 16-x, find the opposite of each term.
x-6+x=2\sqrt{15-x}
Subtract 16 from 10 to get -6.
2x-6=2\sqrt{15-x}
Combine x and x to get 2x.
\left(2x-6\right)^{2}=\left(2\sqrt{15-x}\right)^{2}
Square both sides of the equation.
4x^{2}-24x+36=\left(2\sqrt{15-x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-6\right)^{2}.
4x^{2}-24x+36=2^{2}\left(\sqrt{15-x}\right)^{2}
Expand \left(2\sqrt{15-x}\right)^{2}.
4x^{2}-24x+36=4\left(\sqrt{15-x}\right)^{2}
Calculate 2 to the power of 2 and get 4.
4x^{2}-24x+36=4\left(15-x\right)
Calculate \sqrt{15-x} to the power of 2 and get 15-x.
4x^{2}-24x+36=60-4x
Use the distributive property to multiply 4 by 15-x.
4x^{2}-24x+36-60=-4x
Subtract 60 from both sides.
4x^{2}-24x-24=-4x
Subtract 60 from 36 to get -24.
4x^{2}-24x-24+4x=0
Add 4x to both sides.
4x^{2}-20x-24=0
Combine -24x and 4x to get -20x.
x^{2}-5x-6=0
Divide both sides by 4.
a+b=-5 ab=1\left(-6\right)=-6
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-6. To find a and b, set up a system to be solved.
1,-6 2,-3
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -6.
1-6=-5 2-3=-1
Calculate the sum for each pair.
a=-6 b=1
The solution is the pair that gives sum -5.
\left(x^{2}-6x\right)+\left(x-6\right)
Rewrite x^{2}-5x-6 as \left(x^{2}-6x\right)+\left(x-6\right).
x\left(x-6\right)+x-6
Factor out x in x^{2}-6x.
\left(x-6\right)\left(x+1\right)
Factor out common term x-6 by using distributive property.
x=6 x=-1
To find equation solutions, solve x-6=0 and x+1=0.
\sqrt{6+10}-\sqrt{15-6}=1
Substitute 6 for x in the equation \sqrt{x+10}-\sqrt{15-x}=1.
1=1
Simplify. The value x=6 satisfies the equation.
\sqrt{-1+10}-\sqrt{15-\left(-1\right)}=1
Substitute -1 for x in the equation \sqrt{x+10}-\sqrt{15-x}=1.
-1=1
Simplify. The value x=-1 does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{6+10}-\sqrt{15-6}=1
Substitute 6 for x in the equation \sqrt{x+10}-\sqrt{15-x}=1.
1=1
Simplify. The value x=6 satisfies the equation.
x=6
Equation \sqrt{x+10}=\sqrt{15-x}+1 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}