Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{x+1}=1+\sqrt{x-4}
Subtract -\sqrt{x-4} from both sides of the equation.
\left(\sqrt{x+1}\right)^{2}=\left(1+\sqrt{x-4}\right)^{2}
Square both sides of the equation.
x+1=\left(1+\sqrt{x-4}\right)^{2}
Calculate \sqrt{x+1} to the power of 2 and get x+1.
x+1=1+2\sqrt{x-4}+\left(\sqrt{x-4}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{x-4}\right)^{2}.
x+1=1+2\sqrt{x-4}+x-4
Calculate \sqrt{x-4} to the power of 2 and get x-4.
x+1=-3+2\sqrt{x-4}+x
Subtract 4 from 1 to get -3.
x+1-2\sqrt{x-4}=-3+x
Subtract 2\sqrt{x-4} from both sides.
x+1-2\sqrt{x-4}-x=-3
Subtract x from both sides.
1-2\sqrt{x-4}=-3
Combine x and -x to get 0.
-2\sqrt{x-4}=-3-1
Subtract 1 from both sides.
-2\sqrt{x-4}=-4
Subtract 1 from -3 to get -4.
\sqrt{x-4}=\frac{-4}{-2}
Divide both sides by -2.
\sqrt{x-4}=2
Divide -4 by -2 to get 2.
x-4=4
Square both sides of the equation.
x-4-\left(-4\right)=4-\left(-4\right)
Add 4 to both sides of the equation.
x=4-\left(-4\right)
Subtracting -4 from itself leaves 0.
x=8
Subtract -4 from 4.
\sqrt{8+1}-\sqrt{8-4}=1
Substitute 8 for x in the equation \sqrt{x+1}-\sqrt{x-4}=1.
1=1
Simplify. The value x=8 satisfies the equation.
x=8
Equation \sqrt{x+1}=\sqrt{x-4}+1 has a unique solution.