Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{x+1}-\sqrt{9-x}\right)^{2}=\left(\sqrt{2x-12}\right)^{2}
Square both sides of the equation.
\left(\sqrt{x+1}\right)^{2}-2\sqrt{x+1}\sqrt{9-x}+\left(\sqrt{9-x}\right)^{2}=\left(\sqrt{2x-12}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{x+1}-\sqrt{9-x}\right)^{2}.
x+1-2\sqrt{x+1}\sqrt{9-x}+\left(\sqrt{9-x}\right)^{2}=\left(\sqrt{2x-12}\right)^{2}
Calculate \sqrt{x+1} to the power of 2 and get x+1.
x+1-2\sqrt{x+1}\sqrt{9-x}+9-x=\left(\sqrt{2x-12}\right)^{2}
Calculate \sqrt{9-x} to the power of 2 and get 9-x.
x+10-2\sqrt{x+1}\sqrt{9-x}-x=\left(\sqrt{2x-12}\right)^{2}
Add 1 and 9 to get 10.
10-2\sqrt{x+1}\sqrt{9-x}=\left(\sqrt{2x-12}\right)^{2}
Combine x and -x to get 0.
10-2\sqrt{x+1}\sqrt{9-x}=2x-12
Calculate \sqrt{2x-12} to the power of 2 and get 2x-12.
-2\sqrt{x+1}\sqrt{9-x}=2x-12-10
Subtract 10 from both sides of the equation.
-2\sqrt{x+1}\sqrt{9-x}=2x-22
Subtract 10 from -12 to get -22.
\left(-2\sqrt{x+1}\sqrt{9-x}\right)^{2}=\left(2x-22\right)^{2}
Square both sides of the equation.
\left(-2\right)^{2}\left(\sqrt{x+1}\right)^{2}\left(\sqrt{9-x}\right)^{2}=\left(2x-22\right)^{2}
Expand \left(-2\sqrt{x+1}\sqrt{9-x}\right)^{2}.
4\left(\sqrt{x+1}\right)^{2}\left(\sqrt{9-x}\right)^{2}=\left(2x-22\right)^{2}
Calculate -2 to the power of 2 and get 4.
4\left(x+1\right)\left(\sqrt{9-x}\right)^{2}=\left(2x-22\right)^{2}
Calculate \sqrt{x+1} to the power of 2 and get x+1.
4\left(x+1\right)\left(9-x\right)=\left(2x-22\right)^{2}
Calculate \sqrt{9-x} to the power of 2 and get 9-x.
\left(4x+4\right)\left(9-x\right)=\left(2x-22\right)^{2}
Use the distributive property to multiply 4 by x+1.
36x-4x^{2}+36-4x=\left(2x-22\right)^{2}
Apply the distributive property by multiplying each term of 4x+4 by each term of 9-x.
32x-4x^{2}+36=\left(2x-22\right)^{2}
Combine 36x and -4x to get 32x.
32x-4x^{2}+36=4x^{2}-88x+484
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-22\right)^{2}.
32x-4x^{2}+36-4x^{2}=-88x+484
Subtract 4x^{2} from both sides.
32x-8x^{2}+36=-88x+484
Combine -4x^{2} and -4x^{2} to get -8x^{2}.
32x-8x^{2}+36+88x=484
Add 88x to both sides.
120x-8x^{2}+36=484
Combine 32x and 88x to get 120x.
120x-8x^{2}+36-484=0
Subtract 484 from both sides.
120x-8x^{2}-448=0
Subtract 484 from 36 to get -448.
-8x^{2}+120x-448=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-120±\sqrt{120^{2}-4\left(-8\right)\left(-448\right)}}{2\left(-8\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -8 for a, 120 for b, and -448 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-120±\sqrt{14400-4\left(-8\right)\left(-448\right)}}{2\left(-8\right)}
Square 120.
x=\frac{-120±\sqrt{14400+32\left(-448\right)}}{2\left(-8\right)}
Multiply -4 times -8.
x=\frac{-120±\sqrt{14400-14336}}{2\left(-8\right)}
Multiply 32 times -448.
x=\frac{-120±\sqrt{64}}{2\left(-8\right)}
Add 14400 to -14336.
x=\frac{-120±8}{2\left(-8\right)}
Take the square root of 64.
x=\frac{-120±8}{-16}
Multiply 2 times -8.
x=-\frac{112}{-16}
Now solve the equation x=\frac{-120±8}{-16} when ± is plus. Add -120 to 8.
x=7
Divide -112 by -16.
x=-\frac{128}{-16}
Now solve the equation x=\frac{-120±8}{-16} when ± is minus. Subtract 8 from -120.
x=8
Divide -128 by -16.
x=7 x=8
The equation is now solved.
\sqrt{7+1}-\sqrt{9-7}=\sqrt{2\times 7-12}
Substitute 7 for x in the equation \sqrt{x+1}-\sqrt{9-x}=\sqrt{2x-12}.
2^{\frac{1}{2}}=2^{\frac{1}{2}}
Simplify. The value x=7 satisfies the equation.
\sqrt{8+1}-\sqrt{9-8}=\sqrt{2\times 8-12}
Substitute 8 for x in the equation \sqrt{x+1}-\sqrt{9-x}=\sqrt{2x-12}.
2=2
Simplify. The value x=8 satisfies the equation.
x=7 x=8
List all solutions of \sqrt{x+1}-\sqrt{9-x}=\sqrt{2x-12}.