Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{x+1}\right)^{2}=\left(1+\sqrt{4-x}\right)^{2}
Square both sides of the equation.
x+1=\left(1+\sqrt{4-x}\right)^{2}
Calculate \sqrt{x+1} to the power of 2 and get x+1.
x+1=1+2\sqrt{4-x}+\left(\sqrt{4-x}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{4-x}\right)^{2}.
x+1=1+2\sqrt{4-x}+4-x
Calculate \sqrt{4-x} to the power of 2 and get 4-x.
x+1=5+2\sqrt{4-x}-x
Add 1 and 4 to get 5.
x+1-\left(5-x\right)=2\sqrt{4-x}
Subtract 5-x from both sides of the equation.
x+1-5+x=2\sqrt{4-x}
To find the opposite of 5-x, find the opposite of each term.
x-4+x=2\sqrt{4-x}
Subtract 5 from 1 to get -4.
2x-4=2\sqrt{4-x}
Combine x and x to get 2x.
\left(2x-4\right)^{2}=\left(2\sqrt{4-x}\right)^{2}
Square both sides of the equation.
4x^{2}-16x+16=\left(2\sqrt{4-x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-4\right)^{2}.
4x^{2}-16x+16=2^{2}\left(\sqrt{4-x}\right)^{2}
Expand \left(2\sqrt{4-x}\right)^{2}.
4x^{2}-16x+16=4\left(\sqrt{4-x}\right)^{2}
Calculate 2 to the power of 2 and get 4.
4x^{2}-16x+16=4\left(4-x\right)
Calculate \sqrt{4-x} to the power of 2 and get 4-x.
4x^{2}-16x+16=16-4x
Use the distributive property to multiply 4 by 4-x.
4x^{2}-16x+16-16=-4x
Subtract 16 from both sides.
4x^{2}-16x=-4x
Subtract 16 from 16 to get 0.
4x^{2}-16x+4x=0
Add 4x to both sides.
4x^{2}-12x=0
Combine -16x and 4x to get -12x.
x\left(4x-12\right)=0
Factor out x.
x=0 x=3
To find equation solutions, solve x=0 and 4x-12=0.
\sqrt{0+1}=1+\sqrt{4-0}
Substitute 0 for x in the equation \sqrt{x+1}=1+\sqrt{4-x}.
1=3
Simplify. The value x=0 does not satisfy the equation.
\sqrt{3+1}=1+\sqrt{4-3}
Substitute 3 for x in the equation \sqrt{x+1}=1+\sqrt{4-x}.
2=2
Simplify. The value x=3 satisfies the equation.
x=3
Equation \sqrt{x+1}=\sqrt{4-x}+1 has a unique solution.