Solve for x
x=2
x=0
Graph
Share
Copied to clipboard
\left(\sqrt{x+\sqrt{2x}}\right)^{2}=\left(\sqrt{2x}\right)^{2}
Square both sides of the equation.
x+\sqrt{2x}=\left(\sqrt{2x}\right)^{2}
Calculate \sqrt{x+\sqrt{2x}} to the power of 2 and get x+\sqrt{2x}.
x+\sqrt{2x}=2x
Calculate \sqrt{2x} to the power of 2 and get 2x.
\sqrt{2x}=2x-x
Subtract x from both sides of the equation.
\sqrt{2x}=x
Combine 2x and -x to get x.
\left(\sqrt{2x}\right)^{2}=x^{2}
Square both sides of the equation.
2x=x^{2}
Calculate \sqrt{2x} to the power of 2 and get 2x.
2x-x^{2}=0
Subtract x^{2} from both sides.
x\left(2-x\right)=0
Factor out x.
x=0 x=2
To find equation solutions, solve x=0 and 2-x=0.
\sqrt{0+\sqrt{2\times 0}}=\sqrt{2\times 0}
Substitute 0 for x in the equation \sqrt{x+\sqrt{2x}}=\sqrt{2x}.
0=0
Simplify. The value x=0 satisfies the equation.
\sqrt{2+\sqrt{2\times 2}}=\sqrt{2\times 2}
Substitute 2 for x in the equation \sqrt{x+\sqrt{2x}}=\sqrt{2x}.
2=2
Simplify. The value x=2 satisfies the equation.
x=0 x=2
List all solutions of \sqrt{x+\sqrt{2x}}=\sqrt{2x}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}