Solve for v
v=-3
Share
Copied to clipboard
\sqrt{v+4}=\sqrt{5v+16}
Subtract -\sqrt{5v+16} from both sides of the equation.
\left(\sqrt{v+4}\right)^{2}=\left(\sqrt{5v+16}\right)^{2}
Square both sides of the equation.
v+4=\left(\sqrt{5v+16}\right)^{2}
Calculate \sqrt{v+4} to the power of 2 and get v+4.
v+4=5v+16
Calculate \sqrt{5v+16} to the power of 2 and get 5v+16.
v+4-5v=16
Subtract 5v from both sides.
-4v+4=16
Combine v and -5v to get -4v.
-4v=16-4
Subtract 4 from both sides.
-4v=12
Subtract 4 from 16 to get 12.
v=\frac{12}{-4}
Divide both sides by -4.
v=-3
Divide 12 by -4 to get -3.
\sqrt{-3+4}-\sqrt{5\left(-3\right)+16}=0
Substitute -3 for v in the equation \sqrt{v+4}-\sqrt{5v+16}=0.
0=0
Simplify. The value v=-3 satisfies the equation.
v=-3
Equation \sqrt{v+4}=\sqrt{5v+16} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}