Solve for t
t=-7
Share
Copied to clipboard
\left(\sqrt{t^{2}+7t+4}\right)^{2}=\left(t+9\right)^{2}
Square both sides of the equation.
t^{2}+7t+4=\left(t+9\right)^{2}
Calculate \sqrt{t^{2}+7t+4} to the power of 2 and get t^{2}+7t+4.
t^{2}+7t+4=t^{2}+18t+81
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(t+9\right)^{2}.
t^{2}+7t+4-t^{2}=18t+81
Subtract t^{2} from both sides.
7t+4=18t+81
Combine t^{2} and -t^{2} to get 0.
7t+4-18t=81
Subtract 18t from both sides.
-11t+4=81
Combine 7t and -18t to get -11t.
-11t=81-4
Subtract 4 from both sides.
-11t=77
Subtract 4 from 81 to get 77.
t=\frac{77}{-11}
Divide both sides by -11.
t=-7
Divide 77 by -11 to get -7.
\sqrt{\left(-7\right)^{2}+7\left(-7\right)+4}=-7+9
Substitute -7 for t in the equation \sqrt{t^{2}+7t+4}=t+9.
2=2
Simplify. The value t=-7 satisfies the equation.
t=-7
Equation \sqrt{t^{2}+7t+4}=t+9 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}