Solve for q
q=-1
q=-2
Share
Copied to clipboard
\left(\sqrt{q+2}+1\right)^{2}=\left(\sqrt{3q+7}\right)^{2}
Square both sides of the equation.
\left(\sqrt{q+2}\right)^{2}+2\sqrt{q+2}+1=\left(\sqrt{3q+7}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{q+2}+1\right)^{2}.
q+2+2\sqrt{q+2}+1=\left(\sqrt{3q+7}\right)^{2}
Calculate \sqrt{q+2} to the power of 2 and get q+2.
q+3+2\sqrt{q+2}=\left(\sqrt{3q+7}\right)^{2}
Add 2 and 1 to get 3.
q+3+2\sqrt{q+2}=3q+7
Calculate \sqrt{3q+7} to the power of 2 and get 3q+7.
2\sqrt{q+2}=3q+7-\left(q+3\right)
Subtract q+3 from both sides of the equation.
2\sqrt{q+2}=3q+7-q-3
To find the opposite of q+3, find the opposite of each term.
2\sqrt{q+2}=2q+7-3
Combine 3q and -q to get 2q.
2\sqrt{q+2}=2q+4
Subtract 3 from 7 to get 4.
\left(2\sqrt{q+2}\right)^{2}=\left(2q+4\right)^{2}
Square both sides of the equation.
2^{2}\left(\sqrt{q+2}\right)^{2}=\left(2q+4\right)^{2}
Expand \left(2\sqrt{q+2}\right)^{2}.
4\left(\sqrt{q+2}\right)^{2}=\left(2q+4\right)^{2}
Calculate 2 to the power of 2 and get 4.
4\left(q+2\right)=\left(2q+4\right)^{2}
Calculate \sqrt{q+2} to the power of 2 and get q+2.
4q+8=\left(2q+4\right)^{2}
Use the distributive property to multiply 4 by q+2.
4q+8=4q^{2}+16q+16
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2q+4\right)^{2}.
4q+8-4q^{2}=16q+16
Subtract 4q^{2} from both sides.
4q+8-4q^{2}-16q=16
Subtract 16q from both sides.
-12q+8-4q^{2}=16
Combine 4q and -16q to get -12q.
-12q+8-4q^{2}-16=0
Subtract 16 from both sides.
-12q-8-4q^{2}=0
Subtract 16 from 8 to get -8.
-3q-2-q^{2}=0
Divide both sides by 4.
-q^{2}-3q-2=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-3 ab=-\left(-2\right)=2
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -q^{2}+aq+bq-2. To find a and b, set up a system to be solved.
a=-1 b=-2
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. The only such pair is the system solution.
\left(-q^{2}-q\right)+\left(-2q-2\right)
Rewrite -q^{2}-3q-2 as \left(-q^{2}-q\right)+\left(-2q-2\right).
q\left(-q-1\right)+2\left(-q-1\right)
Factor out q in the first and 2 in the second group.
\left(-q-1\right)\left(q+2\right)
Factor out common term -q-1 by using distributive property.
q=-1 q=-2
To find equation solutions, solve -q-1=0 and q+2=0.
\sqrt{-1+2}+1=\sqrt{3\left(-1\right)+7}
Substitute -1 for q in the equation \sqrt{q+2}+1=\sqrt{3q+7}.
2=2
Simplify. The value q=-1 satisfies the equation.
\sqrt{-2+2}+1=\sqrt{3\left(-2\right)+7}
Substitute -2 for q in the equation \sqrt{q+2}+1=\sqrt{3q+7}.
1=1
Simplify. The value q=-2 satisfies the equation.
q=-1 q=-2
List all solutions of \sqrt{q+2}+1=\sqrt{3q+7}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}