Solve for m
m=10
Share
Copied to clipboard
\sqrt{m-1}=m-2-5
Subtract 5 from both sides of the equation.
\sqrt{m-1}=m-7
Subtract 5 from -2 to get -7.
\left(\sqrt{m-1}\right)^{2}=\left(m-7\right)^{2}
Square both sides of the equation.
m-1=\left(m-7\right)^{2}
Calculate \sqrt{m-1} to the power of 2 and get m-1.
m-1=m^{2}-14m+49
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(m-7\right)^{2}.
m-1-m^{2}=-14m+49
Subtract m^{2} from both sides.
m-1-m^{2}+14m=49
Add 14m to both sides.
15m-1-m^{2}=49
Combine m and 14m to get 15m.
15m-1-m^{2}-49=0
Subtract 49 from both sides.
15m-50-m^{2}=0
Subtract 49 from -1 to get -50.
-m^{2}+15m-50=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=15 ab=-\left(-50\right)=50
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -m^{2}+am+bm-50. To find a and b, set up a system to be solved.
1,50 2,25 5,10
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 50.
1+50=51 2+25=27 5+10=15
Calculate the sum for each pair.
a=10 b=5
The solution is the pair that gives sum 15.
\left(-m^{2}+10m\right)+\left(5m-50\right)
Rewrite -m^{2}+15m-50 as \left(-m^{2}+10m\right)+\left(5m-50\right).
-m\left(m-10\right)+5\left(m-10\right)
Factor out -m in the first and 5 in the second group.
\left(m-10\right)\left(-m+5\right)
Factor out common term m-10 by using distributive property.
m=10 m=5
To find equation solutions, solve m-10=0 and -m+5=0.
\sqrt{10-1}+5=10-2
Substitute 10 for m in the equation \sqrt{m-1}+5=m-2.
8=8
Simplify. The value m=10 satisfies the equation.
\sqrt{5-1}+5=5-2
Substitute 5 for m in the equation \sqrt{m-1}+5=m-2.
7=3
Simplify. The value m=5 does not satisfy the equation.
m=10
Equation \sqrt{m-1}=m-7 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}