Solve for b
b=-\sqrt{4c+2}x+x^{2}+c
c\geq -\frac{1}{2}\text{ and }x-\frac{\sqrt{4c+2}}{2}\geq 0
Solve for c
c=-\sqrt{4b+2}x+x^{2}+b
b\geq -\frac{1}{2}\text{ and }x-\frac{\sqrt{4b+2}}{2}\geq 0
Solve for b (complex solution)
\left\{\begin{matrix}b=-\sqrt{4c+2}x+x^{2}+c\text{, }&arg(x-\frac{\sqrt{4c+2}}{2})<\pi \\b=-\frac{1}{2}=-0.5\text{, }&c=x^{2}-\frac{1}{2}\text{ and }|arg(-\sqrt{x^{2}})-arg(-x)|<\pi \end{matrix}\right.
Solve for c (complex solution)
\left\{\begin{matrix}c=-\sqrt{4b+2}x+x^{2}+b\text{, }&arg(x-\frac{\sqrt{4b+2}}{2})<\pi \\c=-\frac{1}{2}\text{, }&b=x^{2}-\frac{1}{2}\text{ and }|arg(-\sqrt{x^{2}})-arg(-x)|<\pi \end{matrix}\right.
Graph
Quiz
Algebra
5 problems similar to:
\sqrt { c + \frac { 1 } { 2 } } + \sqrt { b + \frac { 1 } { 2 } } = x
Share
Copied to clipboard
\sqrt{b+\frac{1}{2}}+\sqrt{c+\frac{1}{2}}-\sqrt{c+\frac{1}{2}}=x-\sqrt{c+\frac{1}{2}}
Subtract \sqrt{c+\frac{1}{2}} from both sides of the equation.
\sqrt{b+\frac{1}{2}}=x-\sqrt{c+\frac{1}{2}}
Subtracting \sqrt{c+\frac{1}{2}} from itself leaves 0.
\sqrt{b+\frac{1}{2}}=x-\frac{\sqrt{4c+2}}{2}
Subtract \sqrt{c+\frac{1}{2}} from x.
b+\frac{1}{2}=\frac{\left(\sqrt{2}x-\sqrt{2c+1}\right)^{2}}{2}
Square both sides of the equation.
b+\frac{1}{2}-\frac{1}{2}=\frac{\left(\sqrt{2}x-\sqrt{2c+1}\right)^{2}}{2}-\frac{1}{2}
Subtract \frac{1}{2} from both sides of the equation.
b=\frac{\left(\sqrt{2}x-\sqrt{2c+1}\right)^{2}}{2}-\frac{1}{2}
Subtracting \frac{1}{2} from itself leaves 0.
b=-\sqrt{4c+2}x+x^{2}+c
Subtract \frac{1}{2} from \frac{\left(\sqrt{2}x-\sqrt{2c+1}\right)^{2}}{2}.
\sqrt{c+\frac{1}{2}}+\sqrt{b+\frac{1}{2}}-\sqrt{b+\frac{1}{2}}=x-\sqrt{b+\frac{1}{2}}
Subtract \sqrt{b+\frac{1}{2}} from both sides of the equation.
\sqrt{c+\frac{1}{2}}=x-\sqrt{b+\frac{1}{2}}
Subtracting \sqrt{b+\frac{1}{2}} from itself leaves 0.
\sqrt{c+\frac{1}{2}}=x-\frac{\sqrt{4b+2}}{2}
Subtract \sqrt{b+\frac{1}{2}} from x.
c+\frac{1}{2}=\frac{\left(\sqrt{2}x-\sqrt{2b+1}\right)^{2}}{2}
Square both sides of the equation.
c+\frac{1}{2}-\frac{1}{2}=\frac{\left(\sqrt{2}x-\sqrt{2b+1}\right)^{2}}{2}-\frac{1}{2}
Subtract \frac{1}{2} from both sides of the equation.
c=\frac{\left(\sqrt{2}x-\sqrt{2b+1}\right)^{2}}{2}-\frac{1}{2}
Subtracting \frac{1}{2} from itself leaves 0.
c=-\sqrt{4b+2}x+x^{2}+b
Subtract \frac{1}{2} from \frac{\left(\sqrt{2}x-\sqrt{2b+1}\right)^{2}}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}