Solve for a
a=8
a=4
Share
Copied to clipboard
\left(\sqrt{a-4}+1\right)^{2}=\left(\sqrt{2a-7}\right)^{2}
Square both sides of the equation.
\left(\sqrt{a-4}\right)^{2}+2\sqrt{a-4}+1=\left(\sqrt{2a-7}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{a-4}+1\right)^{2}.
a-4+2\sqrt{a-4}+1=\left(\sqrt{2a-7}\right)^{2}
Calculate \sqrt{a-4} to the power of 2 and get a-4.
a-3+2\sqrt{a-4}=\left(\sqrt{2a-7}\right)^{2}
Add -4 and 1 to get -3.
a-3+2\sqrt{a-4}=2a-7
Calculate \sqrt{2a-7} to the power of 2 and get 2a-7.
2\sqrt{a-4}=2a-7-\left(a-3\right)
Subtract a-3 from both sides of the equation.
2\sqrt{a-4}=2a-7-a+3
To find the opposite of a-3, find the opposite of each term.
2\sqrt{a-4}=a-7+3
Combine 2a and -a to get a.
2\sqrt{a-4}=a-4
Add -7 and 3 to get -4.
\left(2\sqrt{a-4}\right)^{2}=\left(a-4\right)^{2}
Square both sides of the equation.
2^{2}\left(\sqrt{a-4}\right)^{2}=\left(a-4\right)^{2}
Expand \left(2\sqrt{a-4}\right)^{2}.
4\left(\sqrt{a-4}\right)^{2}=\left(a-4\right)^{2}
Calculate 2 to the power of 2 and get 4.
4\left(a-4\right)=\left(a-4\right)^{2}
Calculate \sqrt{a-4} to the power of 2 and get a-4.
4a-16=\left(a-4\right)^{2}
Use the distributive property to multiply 4 by a-4.
4a-16=a^{2}-8a+16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(a-4\right)^{2}.
4a-16-a^{2}=-8a+16
Subtract a^{2} from both sides.
4a-16-a^{2}+8a=16
Add 8a to both sides.
12a-16-a^{2}=16
Combine 4a and 8a to get 12a.
12a-16-a^{2}-16=0
Subtract 16 from both sides.
12a-32-a^{2}=0
Subtract 16 from -16 to get -32.
-a^{2}+12a-32=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=12 ab=-\left(-32\right)=32
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -a^{2}+aa+ba-32. To find a and b, set up a system to be solved.
1,32 2,16 4,8
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 32.
1+32=33 2+16=18 4+8=12
Calculate the sum for each pair.
a=8 b=4
The solution is the pair that gives sum 12.
\left(-a^{2}+8a\right)+\left(4a-32\right)
Rewrite -a^{2}+12a-32 as \left(-a^{2}+8a\right)+\left(4a-32\right).
-a\left(a-8\right)+4\left(a-8\right)
Factor out -a in the first and 4 in the second group.
\left(a-8\right)\left(-a+4\right)
Factor out common term a-8 by using distributive property.
a=8 a=4
To find equation solutions, solve a-8=0 and -a+4=0.
\sqrt{8-4}+1=\sqrt{2\times 8-7}
Substitute 8 for a in the equation \sqrt{a-4}+1=\sqrt{2a-7}.
3=3
Simplify. The value a=8 satisfies the equation.
\sqrt{4-4}+1=\sqrt{2\times 4-7}
Substitute 4 for a in the equation \sqrt{a-4}+1=\sqrt{2a-7}.
1=1
Simplify. The value a=4 satisfies the equation.
a=8 a=4
List all solutions of \sqrt{a-4}+1=\sqrt{2a-7}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}