Solve for b (complex solution)
\left\{\begin{matrix}b\neq 0\text{, }&a=-1\text{ or }a=-i\text{ or }a=i\text{ or }a=1\\b=0\text{, }&a\neq 0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=0\text{, }&a\neq 0\text{ and }|a|\neq 1\\b\leq 0\text{, }&a=-1\\b\geq 0\text{, }&a=1\end{matrix}\right.
Solve for a (complex solution)
\left\{\begin{matrix}\\a=i\text{; }a=1\text{; }a=-i\text{; }a=-1\text{, }&\text{unconditionally}\\a\neq 0\text{, }&b=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-1\text{, }&b<0\\a=1\text{, }&b>0\\a\neq 0\text{, }&b=0\end{matrix}\right.
Share
Copied to clipboard
\left(\sqrt{a^{3}b}\right)^{2}=\left(\sqrt{\frac{b}{a}}\right)^{2}
Square both sides of the equation.
a^{3}b=\left(\sqrt{\frac{b}{a}}\right)^{2}
Calculate \sqrt{a^{3}b} to the power of 2 and get a^{3}b.
a^{3}b=\frac{b}{a}
Calculate \sqrt{\frac{b}{a}} to the power of 2 and get \frac{b}{a}.
a^{3}ba=b
Multiply both sides of the equation by a.
a^{4}b=b
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
a^{4}b-b=0
Subtract b from both sides.
\left(a^{4}-1\right)b=0
Combine all terms containing b.
b=0
Divide 0 by a^{4}-1.
\sqrt{a^{3}\times 0}=\sqrt{\frac{0}{a}}
Substitute 0 for b in the equation \sqrt{a^{3}b}=\sqrt{\frac{b}{a}}.
0=0
Simplify. The value b=0 satisfies the equation.
b=0
Equation \sqrt{ba^{3}}=\sqrt{\frac{b}{a}} has a unique solution.
\left(\sqrt{a^{3}b}\right)^{2}=\left(\sqrt{\frac{b}{a}}\right)^{2}
Square both sides of the equation.
a^{3}b=\left(\sqrt{\frac{b}{a}}\right)^{2}
Calculate \sqrt{a^{3}b} to the power of 2 and get a^{3}b.
a^{3}b=\frac{b}{a}
Calculate \sqrt{\frac{b}{a}} to the power of 2 and get \frac{b}{a}.
a^{3}ba=b
Multiply both sides of the equation by a.
a^{4}b=b
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
a^{4}b-b=0
Subtract b from both sides.
\left(a^{4}-1\right)b=0
Combine all terms containing b.
b=0
Divide 0 by a^{4}-1.
\sqrt{a^{3}\times 0}=\sqrt{\frac{0}{a}}
Substitute 0 for b in the equation \sqrt{a^{3}b}=\sqrt{\frac{b}{a}}.
0=0
Simplify. The value b=0 satisfies the equation.
b=0
Equation \sqrt{ba^{3}}=\sqrt{\frac{b}{a}} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}