Solve for a (complex solution)
\left\{\begin{matrix}\\a=b\text{, }&\text{unconditionally}\\a\in \mathrm{C}\text{, }&b=0\text{ and }arg(a)<\pi \end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=b\text{, }&b\neq 0\\a\geq 0\text{, }&b=0\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}\\b=a\text{, }&\text{unconditionally}\\b=0\text{, }&arg(a)<\pi \end{matrix}\right.
Solve for b
\left\{\begin{matrix}\\b=a\text{, }&\text{unconditionally}\\b=0\text{, }&a\geq 0\end{matrix}\right.
Share
Copied to clipboard
\left(\sqrt{a^{2}-b^{2}}\right)^{2}=\left(a-b\right)^{2}
Square both sides of the equation.
a^{2}-b^{2}=\left(a-b\right)^{2}
Calculate \sqrt{a^{2}-b^{2}} to the power of 2 and get a^{2}-b^{2}.
a^{2}-b^{2}=a^{2}-2ab+b^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-b\right)^{2}.
a^{2}-b^{2}-a^{2}=-2ab+b^{2}
Subtract a^{2} from both sides.
-b^{2}=-2ab+b^{2}
Combine a^{2} and -a^{2} to get 0.
-2ab+b^{2}=-b^{2}
Swap sides so that all variable terms are on the left hand side.
-2ab=-b^{2}-b^{2}
Subtract b^{2} from both sides.
-2ab=-2b^{2}
Combine -b^{2} and -b^{2} to get -2b^{2}.
ab=b^{2}
Cancel out -2 on both sides.
ba=b^{2}
The equation is in standard form.
\frac{ba}{b}=\frac{b^{2}}{b}
Divide both sides by b.
a=\frac{b^{2}}{b}
Dividing by b undoes the multiplication by b.
a=b
Divide b^{2} by b.
\sqrt{b^{2}-b^{2}}=b-b
Substitute b for a in the equation \sqrt{a^{2}-b^{2}}=a-b.
0=0
Simplify. The value a=b satisfies the equation.
a=b
Equation \sqrt{a^{2}-b^{2}}=a-b has a unique solution.
\left(\sqrt{a^{2}-b^{2}}\right)^{2}=\left(a-b\right)^{2}
Square both sides of the equation.
a^{2}-b^{2}=\left(a-b\right)^{2}
Calculate \sqrt{a^{2}-b^{2}} to the power of 2 and get a^{2}-b^{2}.
a^{2}-b^{2}=a^{2}-2ab+b^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-b\right)^{2}.
a^{2}-b^{2}-a^{2}=-2ab+b^{2}
Subtract a^{2} from both sides.
-b^{2}=-2ab+b^{2}
Combine a^{2} and -a^{2} to get 0.
-2ab+b^{2}=-b^{2}
Swap sides so that all variable terms are on the left hand side.
-2ab=-b^{2}-b^{2}
Subtract b^{2} from both sides.
-2ab=-2b^{2}
Combine -b^{2} and -b^{2} to get -2b^{2}.
ab=b^{2}
Cancel out -2 on both sides.
ba=b^{2}
The equation is in standard form.
\frac{ba}{b}=\frac{b^{2}}{b}
Divide both sides by b.
a=\frac{b^{2}}{b}
Dividing by b undoes the multiplication by b.
a=b
Divide b^{2} by b.
\sqrt{b^{2}-b^{2}}=b-b
Substitute b for a in the equation \sqrt{a^{2}-b^{2}}=a-b.
0=0
Simplify. The value a=b satisfies the equation.
a=b
Equation \sqrt{a^{2}-b^{2}}=a-b has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}