Solve for a
a=5
Share
Copied to clipboard
\left(\sqrt{a^{2}-4a+20}\right)^{2}=a^{2}
Square both sides of the equation.
a^{2}-4a+20=a^{2}
Calculate \sqrt{a^{2}-4a+20} to the power of 2 and get a^{2}-4a+20.
a^{2}-4a+20-a^{2}=0
Subtract a^{2} from both sides.
-4a+20=0
Combine a^{2} and -a^{2} to get 0.
-4a=-20
Subtract 20 from both sides. Anything subtracted from zero gives its negation.
a=\frac{-20}{-4}
Divide both sides by -4.
a=5
Divide -20 by -4 to get 5.
\sqrt{5^{2}-4\times 5+20}=5
Substitute 5 for a in the equation \sqrt{a^{2}-4a+20}=a.
5=5
Simplify. The value a=5 satisfies the equation.
a=5
Equation \sqrt{a^{2}-4a+20}=a has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}