Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{a^{2}-4a+20}\right)^{2}=\left(\sqrt{a}\right)^{2}
Square both sides of the equation.
a^{2}-4a+20=\left(\sqrt{a}\right)^{2}
Calculate \sqrt{a^{2}-4a+20} to the power of 2 and get a^{2}-4a+20.
a^{2}-4a+20=a
Calculate \sqrt{a} to the power of 2 and get a.
a^{2}-4a+20-a=0
Subtract a from both sides.
a^{2}-5a+20=0
Combine -4a and -a to get -5a.
a=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 20}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -5 for b, and 20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-5\right)±\sqrt{25-4\times 20}}{2}
Square -5.
a=\frac{-\left(-5\right)±\sqrt{25-80}}{2}
Multiply -4 times 20.
a=\frac{-\left(-5\right)±\sqrt{-55}}{2}
Add 25 to -80.
a=\frac{-\left(-5\right)±\sqrt{55}i}{2}
Take the square root of -55.
a=\frac{5±\sqrt{55}i}{2}
The opposite of -5 is 5.
a=\frac{5+\sqrt{55}i}{2}
Now solve the equation a=\frac{5±\sqrt{55}i}{2} when ± is plus. Add 5 to i\sqrt{55}.
a=\frac{-\sqrt{55}i+5}{2}
Now solve the equation a=\frac{5±\sqrt{55}i}{2} when ± is minus. Subtract i\sqrt{55} from 5.
a=\frac{5+\sqrt{55}i}{2} a=\frac{-\sqrt{55}i+5}{2}
The equation is now solved.
\sqrt{\left(\frac{5+\sqrt{55}i}{2}\right)^{2}-4\times \frac{5+\sqrt{55}i}{2}+20}=\sqrt{\frac{5+\sqrt{55}i}{2}}
Substitute \frac{5+\sqrt{55}i}{2} for a in the equation \sqrt{a^{2}-4a+20}=\sqrt{a}.
\frac{1}{2}\left(10+2i\times 55^{\frac{1}{2}}\right)^{\frac{1}{2}}=\left(\frac{5}{2}+\frac{1}{2}i\times 55^{\frac{1}{2}}\right)^{\frac{1}{2}}
Simplify. The value a=\frac{5+\sqrt{55}i}{2} satisfies the equation.
\sqrt{\left(\frac{-\sqrt{55}i+5}{2}\right)^{2}-4\times \frac{-\sqrt{55}i+5}{2}+20}=\sqrt{\frac{-\sqrt{55}i+5}{2}}
Substitute \frac{-\sqrt{55}i+5}{2} for a in the equation \sqrt{a^{2}-4a+20}=\sqrt{a}.
\frac{1}{2}\left(10-2i\times 55^{\frac{1}{2}}\right)^{\frac{1}{2}}=\left(-\frac{1}{2}i\times 55^{\frac{1}{2}}+\frac{5}{2}\right)^{\frac{1}{2}}
Simplify. The value a=\frac{-\sqrt{55}i+5}{2} satisfies the equation.
a=\frac{5+\sqrt{55}i}{2} a=\frac{-\sqrt{55}i+5}{2}
List all solutions of \sqrt{a^{2}-4a+20}=\sqrt{a}.