Solve for a
a=-1
Share
Copied to clipboard
\left(\sqrt{a^{2}+2^{2}}\right)^{2}=\left(\sqrt{\left(a+3\right)^{2}+1}\right)^{2}
Square both sides of the equation.
\left(\sqrt{a^{2}+4}\right)^{2}=\left(\sqrt{\left(a+3\right)^{2}+1}\right)^{2}
Calculate 2 to the power of 2 and get 4.
a^{2}+4=\left(\sqrt{\left(a+3\right)^{2}+1}\right)^{2}
Calculate \sqrt{a^{2}+4} to the power of 2 and get a^{2}+4.
a^{2}+4=\left(\sqrt{a^{2}+6a+9+1}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a+3\right)^{2}.
a^{2}+4=\left(\sqrt{a^{2}+6a+10}\right)^{2}
Add 9 and 1 to get 10.
a^{2}+4=a^{2}+6a+10
Calculate \sqrt{a^{2}+6a+10} to the power of 2 and get a^{2}+6a+10.
a^{2}+4-a^{2}=6a+10
Subtract a^{2} from both sides.
4=6a+10
Combine a^{2} and -a^{2} to get 0.
6a+10=4
Swap sides so that all variable terms are on the left hand side.
6a=4-10
Subtract 10 from both sides.
6a=-6
Subtract 10 from 4 to get -6.
a=\frac{-6}{6}
Divide both sides by 6.
a=-1
Divide -6 by 6 to get -1.
\sqrt{\left(-1\right)^{2}+2^{2}}=\sqrt{\left(-1+3\right)^{2}+1}
Substitute -1 for a in the equation \sqrt{a^{2}+2^{2}}=\sqrt{\left(a+3\right)^{2}+1}.
5^{\frac{1}{2}}=5^{\frac{1}{2}}
Simplify. The value a=-1 satisfies the equation.
a=-1
Equation \sqrt{a^{2}+4}=\sqrt{\left(a+3\right)^{2}+1} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}