Solve for a
a=\frac{3}{4}=0.75
Share
Copied to clipboard
\sqrt{a^{2}+1}=2-a
Subtract a from both sides of the equation.
\left(\sqrt{a^{2}+1}\right)^{2}=\left(2-a\right)^{2}
Square both sides of the equation.
a^{2}+1=\left(2-a\right)^{2}
Calculate \sqrt{a^{2}+1} to the power of 2 and get a^{2}+1.
a^{2}+1=4-4a+a^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-a\right)^{2}.
a^{2}+1+4a=4+a^{2}
Add 4a to both sides.
a^{2}+1+4a-a^{2}=4
Subtract a^{2} from both sides.
1+4a=4
Combine a^{2} and -a^{2} to get 0.
4a=4-1
Subtract 1 from both sides.
4a=3
Subtract 1 from 4 to get 3.
a=\frac{3}{4}
Divide both sides by 4.
\sqrt{\left(\frac{3}{4}\right)^{2}+1}+\frac{3}{4}=2
Substitute \frac{3}{4} for a in the equation \sqrt{a^{2}+1}+a=2.
2=2
Simplify. The value a=\frac{3}{4} satisfies the equation.
a=\frac{3}{4}
Equation \sqrt{a^{2}+1}=2-a has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}