Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{a^{2}+1}=2-a
Subtract a from both sides of the equation.
\left(\sqrt{a^{2}+1}\right)^{2}=\left(2-a\right)^{2}
Square both sides of the equation.
a^{2}+1=\left(2-a\right)^{2}
Calculate \sqrt{a^{2}+1} to the power of 2 and get a^{2}+1.
a^{2}+1=4-4a+a^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-a\right)^{2}.
a^{2}+1+4a=4+a^{2}
Add 4a to both sides.
a^{2}+1+4a-a^{2}=4
Subtract a^{2} from both sides.
1+4a=4
Combine a^{2} and -a^{2} to get 0.
4a=4-1
Subtract 1 from both sides.
4a=3
Subtract 1 from 4 to get 3.
a=\frac{3}{4}
Divide both sides by 4.
\sqrt{\left(\frac{3}{4}\right)^{2}+1}+\frac{3}{4}=2
Substitute \frac{3}{4} for a in the equation \sqrt{a^{2}+1}+a=2.
2=2
Simplify. The value a=\frac{3}{4} satisfies the equation.
a=\frac{3}{4}
Equation \sqrt{a^{2}+1}=2-a has a unique solution.