Skip to main content
Solve for a
Tick mark Image
Solve for b
Tick mark Image
Solve for a (complex solution)
Tick mark Image
Solve for b (complex solution)
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{a+b}\right)^{2}=\left(\sqrt{a}+\sqrt{b}\right)^{2}
Square both sides of the equation.
a+b=\left(\sqrt{a}+\sqrt{b}\right)^{2}
Calculate \sqrt{a+b} to the power of 2 and get a+b.
a+b=\left(\sqrt{a}\right)^{2}+2\sqrt{a}\sqrt{b}+\left(\sqrt{b}\right)^{2}
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(\sqrt{a}+\sqrt{b}\right)^{2}.
a+b=a+2\sqrt{a}\sqrt{b}+\left(\sqrt{b}\right)^{2}
Calculate \sqrt{a} to the power of 2 and get a.
a+b=a+2\sqrt{a}\sqrt{b}+b
Calculate \sqrt{b} to the power of 2 and get b.
a+b-a=2\sqrt{a}\sqrt{b}+b
Subtract a from both sides.
b=2\sqrt{a}\sqrt{b}+b
Combine a and -a to get 0.
2\sqrt{a}\sqrt{b}+b=b
Swap sides so that all variable terms are on the left hand side.
2\sqrt{a}\sqrt{b}=b-b
Subtract b from both sides.
2\sqrt{a}\sqrt{b}=0
Combine b and -b to get 0.
\frac{2\sqrt{b}\sqrt{a}}{2\sqrt{b}}=\frac{0}{2\sqrt{b}}
Divide both sides by 2\sqrt{b}.
\sqrt{a}=\frac{0}{2\sqrt{b}}
Dividing by 2\sqrt{b} undoes the multiplication by 2\sqrt{b}.
\sqrt{a}=0
Divide 0 by 2\sqrt{b}.
a=0
Square both sides of the equation.
\sqrt{0+b}=\sqrt{0}+\sqrt{b}
Substitute 0 for a in the equation \sqrt{a+b}=\sqrt{a}+\sqrt{b}.
b^{\frac{1}{2}}=b^{\frac{1}{2}}
Simplify. The value a=0 satisfies the equation.
a=0
Equation \sqrt{a+b}=\sqrt{a}+\sqrt{b} has a unique solution.
\left(\sqrt{a+b}\right)^{2}=\left(\sqrt{a}+\sqrt{b}\right)^{2}
Square both sides of the equation.
a+b=\left(\sqrt{a}+\sqrt{b}\right)^{2}
Calculate \sqrt{a+b} to the power of 2 and get a+b.
a+b=\left(\sqrt{a}\right)^{2}+2\sqrt{a}\sqrt{b}+\left(\sqrt{b}\right)^{2}
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(\sqrt{a}+\sqrt{b}\right)^{2}.
a+b=a+2\sqrt{a}\sqrt{b}+\left(\sqrt{b}\right)^{2}
Calculate \sqrt{a} to the power of 2 and get a.
a+b=a+2\sqrt{a}\sqrt{b}+b
Calculate \sqrt{b} to the power of 2 and get b.
a+b-2\sqrt{a}\sqrt{b}=a+b
Subtract 2\sqrt{a}\sqrt{b} from both sides.
a+b-2\sqrt{a}\sqrt{b}-b=a
Subtract b from both sides.
a-2\sqrt{a}\sqrt{b}=a
Combine b and -b to get 0.
-2\sqrt{a}\sqrt{b}=a-a
Subtract a from both sides.
-2\sqrt{a}\sqrt{b}=0
Combine a and -a to get 0.
\frac{\left(-2\sqrt{a}\right)\sqrt{b}}{-2\sqrt{a}}=\frac{0}{-2\sqrt{a}}
Divide both sides by -2\sqrt{a}.
\sqrt{b}=\frac{0}{-2\sqrt{a}}
Dividing by -2\sqrt{a} undoes the multiplication by -2\sqrt{a}.
\sqrt{b}=0
Divide 0 by -2\sqrt{a}.
b=0
Square both sides of the equation.
\sqrt{a+0}=\sqrt{a}+\sqrt{0}
Substitute 0 for b in the equation \sqrt{a+b}=\sqrt{a}+\sqrt{b}.
a^{\frac{1}{2}}=a^{\frac{1}{2}}
Simplify. The value b=0 satisfies the equation.
b=0
Equation \sqrt{a+b}=\sqrt{a}+\sqrt{b} has a unique solution.