Solve for a
\left\{\begin{matrix}a=0\text{, }&b\geq 0\\a\geq 0\text{, }&b=0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=0\text{, }&a\geq 0\\b\geq 0\text{, }&a=0\end{matrix}\right.
Solve for a (complex solution)
\left\{\begin{matrix}\\a=0\text{, }&\text{unconditionally}\\a\neq 0\text{, }&b=0\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}\\b=0\text{, }&\text{unconditionally}\\b\neq 0\text{, }&a=0\end{matrix}\right.
Share
Copied to clipboard
\left(\sqrt{a+b}\right)^{2}=\left(\sqrt{a}+\sqrt{b}\right)^{2}
Square both sides of the equation.
a+b=\left(\sqrt{a}+\sqrt{b}\right)^{2}
Calculate \sqrt{a+b} to the power of 2 and get a+b.
a+b=\left(\sqrt{a}\right)^{2}+2\sqrt{a}\sqrt{b}+\left(\sqrt{b}\right)^{2}
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(\sqrt{a}+\sqrt{b}\right)^{2}.
a+b=a+2\sqrt{a}\sqrt{b}+\left(\sqrt{b}\right)^{2}
Calculate \sqrt{a} to the power of 2 and get a.
a+b=a+2\sqrt{a}\sqrt{b}+b
Calculate \sqrt{b} to the power of 2 and get b.
a+b-a=2\sqrt{a}\sqrt{b}+b
Subtract a from both sides.
b=2\sqrt{a}\sqrt{b}+b
Combine a and -a to get 0.
2\sqrt{a}\sqrt{b}+b=b
Swap sides so that all variable terms are on the left hand side.
2\sqrt{a}\sqrt{b}=b-b
Subtract b from both sides.
2\sqrt{a}\sqrt{b}=0
Combine b and -b to get 0.
\frac{2\sqrt{b}\sqrt{a}}{2\sqrt{b}}=\frac{0}{2\sqrt{b}}
Divide both sides by 2\sqrt{b}.
\sqrt{a}=\frac{0}{2\sqrt{b}}
Dividing by 2\sqrt{b} undoes the multiplication by 2\sqrt{b}.
\sqrt{a}=0
Divide 0 by 2\sqrt{b}.
a=0
Square both sides of the equation.
\sqrt{0+b}=\sqrt{0}+\sqrt{b}
Substitute 0 for a in the equation \sqrt{a+b}=\sqrt{a}+\sqrt{b}.
b^{\frac{1}{2}}=b^{\frac{1}{2}}
Simplify. The value a=0 satisfies the equation.
a=0
Equation \sqrt{a+b}=\sqrt{a}+\sqrt{b} has a unique solution.
\left(\sqrt{a+b}\right)^{2}=\left(\sqrt{a}+\sqrt{b}\right)^{2}
Square both sides of the equation.
a+b=\left(\sqrt{a}+\sqrt{b}\right)^{2}
Calculate \sqrt{a+b} to the power of 2 and get a+b.
a+b=\left(\sqrt{a}\right)^{2}+2\sqrt{a}\sqrt{b}+\left(\sqrt{b}\right)^{2}
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(\sqrt{a}+\sqrt{b}\right)^{2}.
a+b=a+2\sqrt{a}\sqrt{b}+\left(\sqrt{b}\right)^{2}
Calculate \sqrt{a} to the power of 2 and get a.
a+b=a+2\sqrt{a}\sqrt{b}+b
Calculate \sqrt{b} to the power of 2 and get b.
a+b-2\sqrt{a}\sqrt{b}=a+b
Subtract 2\sqrt{a}\sqrt{b} from both sides.
a+b-2\sqrt{a}\sqrt{b}-b=a
Subtract b from both sides.
a-2\sqrt{a}\sqrt{b}=a
Combine b and -b to get 0.
-2\sqrt{a}\sqrt{b}=a-a
Subtract a from both sides.
-2\sqrt{a}\sqrt{b}=0
Combine a and -a to get 0.
\frac{\left(-2\sqrt{a}\right)\sqrt{b}}{-2\sqrt{a}}=\frac{0}{-2\sqrt{a}}
Divide both sides by -2\sqrt{a}.
\sqrt{b}=\frac{0}{-2\sqrt{a}}
Dividing by -2\sqrt{a} undoes the multiplication by -2\sqrt{a}.
\sqrt{b}=0
Divide 0 by -2\sqrt{a}.
b=0
Square both sides of the equation.
\sqrt{a+0}=\sqrt{a}+\sqrt{0}
Substitute 0 for b in the equation \sqrt{a+b}=\sqrt{a}+\sqrt{b}.
a^{\frac{1}{2}}=a^{\frac{1}{2}}
Simplify. The value b=0 satisfies the equation.
b=0
Equation \sqrt{a+b}=\sqrt{a}+\sqrt{b} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}