Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{a+4}=7-\sqrt{a-3}
Subtract \sqrt{a-3} from both sides of the equation.
\left(\sqrt{a+4}\right)^{2}=\left(7-\sqrt{a-3}\right)^{2}
Square both sides of the equation.
a+4=\left(7-\sqrt{a-3}\right)^{2}
Calculate \sqrt{a+4} to the power of 2 and get a+4.
a+4=49-14\sqrt{a-3}+\left(\sqrt{a-3}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(7-\sqrt{a-3}\right)^{2}.
a+4=49-14\sqrt{a-3}+a-3
Calculate \sqrt{a-3} to the power of 2 and get a-3.
a+4=46-14\sqrt{a-3}+a
Subtract 3 from 49 to get 46.
a+4+14\sqrt{a-3}=46+a
Add 14\sqrt{a-3} to both sides.
a+4+14\sqrt{a-3}-a=46
Subtract a from both sides.
4+14\sqrt{a-3}=46
Combine a and -a to get 0.
14\sqrt{a-3}=46-4
Subtract 4 from both sides.
14\sqrt{a-3}=42
Subtract 4 from 46 to get 42.
\sqrt{a-3}=\frac{42}{14}
Divide both sides by 14.
\sqrt{a-3}=3
Divide 42 by 14 to get 3.
a-3=9
Square both sides of the equation.
a-3-\left(-3\right)=9-\left(-3\right)
Add 3 to both sides of the equation.
a=9-\left(-3\right)
Subtracting -3 from itself leaves 0.
a=12
Subtract -3 from 9.
\sqrt{12+4}+\sqrt{12-3}=7
Substitute 12 for a in the equation \sqrt{a+4}+\sqrt{a-3}=7.
7=7
Simplify. The value a=12 satisfies the equation.
a=12
Equation \sqrt{a+4}=-\sqrt{a-3}+7 has a unique solution.