Evaluate
\sqrt{3}\left(\sqrt{6}+4\right)\approx 11.170843917
Share
Copied to clipboard
7\sqrt{2}-\sqrt{12}-\left(\sqrt{32}-\sqrt{108}\right)
Factor 98=7^{2}\times 2. Rewrite the square root of the product \sqrt{7^{2}\times 2} as the product of square roots \sqrt{7^{2}}\sqrt{2}. Take the square root of 7^{2}.
7\sqrt{2}-2\sqrt{3}-\left(\sqrt{32}-\sqrt{108}\right)
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
7\sqrt{2}-2\sqrt{3}-\left(4\sqrt{2}-\sqrt{108}\right)
Factor 32=4^{2}\times 2. Rewrite the square root of the product \sqrt{4^{2}\times 2} as the product of square roots \sqrt{4^{2}}\sqrt{2}. Take the square root of 4^{2}.
7\sqrt{2}-2\sqrt{3}-\left(4\sqrt{2}-6\sqrt{3}\right)
Factor 108=6^{2}\times 3. Rewrite the square root of the product \sqrt{6^{2}\times 3} as the product of square roots \sqrt{6^{2}}\sqrt{3}. Take the square root of 6^{2}.
7\sqrt{2}-2\sqrt{3}-4\sqrt{2}-\left(-6\sqrt{3}\right)
To find the opposite of 4\sqrt{2}-6\sqrt{3}, find the opposite of each term.
3\sqrt{2}-2\sqrt{3}-\left(-6\sqrt{3}\right)
Combine 7\sqrt{2} and -4\sqrt{2} to get 3\sqrt{2}.
3\sqrt{2}-2\sqrt{3}+6\sqrt{3}
The opposite of -6\sqrt{3} is 6\sqrt{3}.
3\sqrt{2}+4\sqrt{3}
Combine -2\sqrt{3} and 6\sqrt{3} to get 4\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}