Solve for x
x=\frac{231\sqrt{2}}{178}+\frac{183}{89}\approx 3.891479398
Graph
Share
Copied to clipboard
\sqrt{98}\left(2x-3\right)=6\left(x+4\right)
Variable x cannot be equal to -4 since division by zero is not defined. Multiply both sides of the equation by x+4.
7\sqrt{2}\left(2x-3\right)=6\left(x+4\right)
Factor 98=7^{2}\times 2. Rewrite the square root of the product \sqrt{7^{2}\times 2} as the product of square roots \sqrt{7^{2}}\sqrt{2}. Take the square root of 7^{2}.
14x\sqrt{2}-21\sqrt{2}=6\left(x+4\right)
Use the distributive property to multiply 7\sqrt{2} by 2x-3.
14x\sqrt{2}-21\sqrt{2}=6x+24
Use the distributive property to multiply 6 by x+4.
14x\sqrt{2}-21\sqrt{2}-6x=24
Subtract 6x from both sides.
14x\sqrt{2}-6x=24+21\sqrt{2}
Add 21\sqrt{2} to both sides.
\left(14\sqrt{2}-6\right)x=24+21\sqrt{2}
Combine all terms containing x.
\left(14\sqrt{2}-6\right)x=21\sqrt{2}+24
The equation is in standard form.
\frac{\left(14\sqrt{2}-6\right)x}{14\sqrt{2}-6}=\frac{21\sqrt{2}+24}{14\sqrt{2}-6}
Divide both sides by 14\sqrt{2}-6.
x=\frac{21\sqrt{2}+24}{14\sqrt{2}-6}
Dividing by 14\sqrt{2}-6 undoes the multiplication by 14\sqrt{2}-6.
x=\frac{231\sqrt{2}}{178}+\frac{183}{89}
Divide 24+21\sqrt{2} by 14\sqrt{2}-6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}