Solve for y
y=7
Graph
Share
Copied to clipboard
\sqrt{9y+1}=4+\sqrt{y+9}
Subtract -\sqrt{y+9} from both sides of the equation.
\left(\sqrt{9y+1}\right)^{2}=\left(4+\sqrt{y+9}\right)^{2}
Square both sides of the equation.
9y+1=\left(4+\sqrt{y+9}\right)^{2}
Calculate \sqrt{9y+1} to the power of 2 and get 9y+1.
9y+1=16+8\sqrt{y+9}+\left(\sqrt{y+9}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4+\sqrt{y+9}\right)^{2}.
9y+1=16+8\sqrt{y+9}+y+9
Calculate \sqrt{y+9} to the power of 2 and get y+9.
9y+1=25+8\sqrt{y+9}+y
Add 16 and 9 to get 25.
9y+1-\left(25+y\right)=8\sqrt{y+9}
Subtract 25+y from both sides of the equation.
9y+1-25-y=8\sqrt{y+9}
To find the opposite of 25+y, find the opposite of each term.
9y-24-y=8\sqrt{y+9}
Subtract 25 from 1 to get -24.
8y-24=8\sqrt{y+9}
Combine 9y and -y to get 8y.
\left(8y-24\right)^{2}=\left(8\sqrt{y+9}\right)^{2}
Square both sides of the equation.
64y^{2}-384y+576=\left(8\sqrt{y+9}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(8y-24\right)^{2}.
64y^{2}-384y+576=8^{2}\left(\sqrt{y+9}\right)^{2}
Expand \left(8\sqrt{y+9}\right)^{2}.
64y^{2}-384y+576=64\left(\sqrt{y+9}\right)^{2}
Calculate 8 to the power of 2 and get 64.
64y^{2}-384y+576=64\left(y+9\right)
Calculate \sqrt{y+9} to the power of 2 and get y+9.
64y^{2}-384y+576=64y+576
Use the distributive property to multiply 64 by y+9.
64y^{2}-384y+576-64y=576
Subtract 64y from both sides.
64y^{2}-448y+576=576
Combine -384y and -64y to get -448y.
64y^{2}-448y+576-576=0
Subtract 576 from both sides.
64y^{2}-448y=0
Subtract 576 from 576 to get 0.
y\left(64y-448\right)=0
Factor out y.
y=0 y=7
To find equation solutions, solve y=0 and 64y-448=0.
\sqrt{9\times 0+1}-\sqrt{0+9}=4
Substitute 0 for y in the equation \sqrt{9y+1}-\sqrt{y+9}=4.
-2=4
Simplify. The value y=0 does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{9\times 7+1}-\sqrt{7+9}=4
Substitute 7 for y in the equation \sqrt{9y+1}-\sqrt{y+9}=4.
4=4
Simplify. The value y=7 satisfies the equation.
y=7
Equation \sqrt{9y+1}=\sqrt{y+9}+4 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}