Solve for x
x=5
Graph
Share
Copied to clipboard
\left(\sqrt{9x-4}\right)^{2}=\left(\sqrt{8x+1}\right)^{2}
Square both sides of the equation.
9x-4=\left(\sqrt{8x+1}\right)^{2}
Calculate \sqrt{9x-4} to the power of 2 and get 9x-4.
9x-4=8x+1
Calculate \sqrt{8x+1} to the power of 2 and get 8x+1.
9x-4-8x=1
Subtract 8x from both sides.
x-4=1
Combine 9x and -8x to get x.
x=1+4
Add 4 to both sides.
x=5
Add 1 and 4 to get 5.
\sqrt{9\times 5-4}=\sqrt{8\times 5+1}
Substitute 5 for x in the equation \sqrt{9x-4}=\sqrt{8x+1}.
41^{\frac{1}{2}}=41^{\frac{1}{2}}
Simplify. The value x=5 satisfies the equation.
x=5
Equation \sqrt{9x-4}=\sqrt{8x+1} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}