Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{9x^{2}-\sqrt{36x^{2}-11}}\right)^{2}=\left(3x-1\right)^{2}
Square both sides of the equation.
9x^{2}-\sqrt{36x^{2}-11}=\left(3x-1\right)^{2}
Calculate \sqrt{9x^{2}-\sqrt{36x^{2}-11}} to the power of 2 and get 9x^{2}-\sqrt{36x^{2}-11}.
9x^{2}-\sqrt{36x^{2}-11}=9x^{2}-6x+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-1\right)^{2}.
-\sqrt{36x^{2}-11}=9x^{2}-6x+1-9x^{2}
Subtract 9x^{2} from both sides of the equation.
-\sqrt{36x^{2}-11}=-6x+1
Combine 9x^{2} and -9x^{2} to get 0.
\left(-\sqrt{36x^{2}-11}\right)^{2}=\left(-6x+1\right)^{2}
Square both sides of the equation.
\left(-1\right)^{2}\left(\sqrt{36x^{2}-11}\right)^{2}=\left(-6x+1\right)^{2}
Expand \left(-\sqrt{36x^{2}-11}\right)^{2}.
1\left(\sqrt{36x^{2}-11}\right)^{2}=\left(-6x+1\right)^{2}
Calculate -1 to the power of 2 and get 1.
1\left(36x^{2}-11\right)=\left(-6x+1\right)^{2}
Calculate \sqrt{36x^{2}-11} to the power of 2 and get 36x^{2}-11.
36x^{2}-11=\left(-6x+1\right)^{2}
Use the distributive property to multiply 1 by 36x^{2}-11.
36x^{2}-11=36x^{2}-12x+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-6x+1\right)^{2}.
36x^{2}-11-36x^{2}=-12x+1
Subtract 36x^{2} from both sides.
-11=-12x+1
Combine 36x^{2} and -36x^{2} to get 0.
-12x+1=-11
Swap sides so that all variable terms are on the left hand side.
-12x=-11-1
Subtract 1 from both sides.
-12x=-12
Subtract 1 from -11 to get -12.
x=\frac{-12}{-12}
Divide both sides by -12.
x=1
Divide -12 by -12 to get 1.
\sqrt{9\times 1^{2}-\sqrt{36\times 1^{2}-11}}=3\times 1-1
Substitute 1 for x in the equation \sqrt{9x^{2}-\sqrt{36x^{2}-11}}=3x-1.
2=2
Simplify. The value x=1 satisfies the equation.
x=1
Equation \sqrt{9x^{2}-\sqrt{36x^{2}-11}}=3x-1 has a unique solution.