Solve for v
v=7
Share
Copied to clipboard
\left(\sqrt{9v-15}\right)^{2}=\left(\sqrt{7v-1}\right)^{2}
Square both sides of the equation.
9v-15=\left(\sqrt{7v-1}\right)^{2}
Calculate \sqrt{9v-15} to the power of 2 and get 9v-15.
9v-15=7v-1
Calculate \sqrt{7v-1} to the power of 2 and get 7v-1.
9v-15-7v=-1
Subtract 7v from both sides.
2v-15=-1
Combine 9v and -7v to get 2v.
2v=-1+15
Add 15 to both sides.
2v=14
Add -1 and 15 to get 14.
v=\frac{14}{2}
Divide both sides by 2.
v=7
Divide 14 by 2 to get 7.
\sqrt{9\times 7-15}=\sqrt{7\times 7-1}
Substitute 7 for v in the equation \sqrt{9v-15}=\sqrt{7v-1}.
4\times 3^{\frac{1}{2}}=4\times 3^{\frac{1}{2}}
Simplify. The value v=7 satisfies the equation.
v=7
Equation \sqrt{9v-15}=\sqrt{7v-1} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}