Skip to main content
Solve for v
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{9v-15}\right)^{2}=\left(\sqrt{7v-1}\right)^{2}
Square both sides of the equation.
9v-15=\left(\sqrt{7v-1}\right)^{2}
Calculate \sqrt{9v-15} to the power of 2 and get 9v-15.
9v-15=7v-1
Calculate \sqrt{7v-1} to the power of 2 and get 7v-1.
9v-15-7v=-1
Subtract 7v from both sides.
2v-15=-1
Combine 9v and -7v to get 2v.
2v=-1+15
Add 15 to both sides.
2v=14
Add -1 and 15 to get 14.
v=\frac{14}{2}
Divide both sides by 2.
v=7
Divide 14 by 2 to get 7.
\sqrt{9\times 7-15}=\sqrt{7\times 7-1}
Substitute 7 for v in the equation \sqrt{9v-15}=\sqrt{7v-1}.
4\times 3^{\frac{1}{2}}=4\times 3^{\frac{1}{2}}
Simplify. The value v=7 satisfies the equation.
v=7
Equation \sqrt{9v-15}=\sqrt{7v-1} has a unique solution.