Evaluate
\frac{6\sqrt{793}}{61}\approx 2.769861214
Share
Copied to clipboard
\sqrt{\frac{549}{61}-\frac{81}{61}}
Convert 9 to fraction \frac{549}{61}.
\sqrt{\frac{549-81}{61}}
Since \frac{549}{61} and \frac{81}{61} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{468}{61}}
Subtract 81 from 549 to get 468.
\frac{\sqrt{468}}{\sqrt{61}}
Rewrite the square root of the division \sqrt{\frac{468}{61}} as the division of square roots \frac{\sqrt{468}}{\sqrt{61}}.
\frac{6\sqrt{13}}{\sqrt{61}}
Factor 468=6^{2}\times 13. Rewrite the square root of the product \sqrt{6^{2}\times 13} as the product of square roots \sqrt{6^{2}}\sqrt{13}. Take the square root of 6^{2}.
\frac{6\sqrt{13}\sqrt{61}}{\left(\sqrt{61}\right)^{2}}
Rationalize the denominator of \frac{6\sqrt{13}}{\sqrt{61}} by multiplying numerator and denominator by \sqrt{61}.
\frac{6\sqrt{13}\sqrt{61}}{61}
The square of \sqrt{61} is 61.
\frac{6\sqrt{793}}{61}
To multiply \sqrt{13} and \sqrt{61}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}