Solve for b
b=-\frac{\sqrt{3}a}{3}+\sqrt{3}+5
Solve for a
a=\sqrt{3}\left(-b+\sqrt{3}+5\right)
Share
Copied to clipboard
3+\sqrt{27}+\sqrt{12}=a+b\sqrt{3}
Calculate the square root of 9 and get 3.
3+3\sqrt{3}+\sqrt{12}=a+b\sqrt{3}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
3+3\sqrt{3}+2\sqrt{3}=a+b\sqrt{3}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
3+5\sqrt{3}=a+b\sqrt{3}
Combine 3\sqrt{3} and 2\sqrt{3} to get 5\sqrt{3}.
a+b\sqrt{3}=3+5\sqrt{3}
Swap sides so that all variable terms are on the left hand side.
b\sqrt{3}=3+5\sqrt{3}-a
Subtract a from both sides.
\sqrt{3}b=-a+5\sqrt{3}+3
The equation is in standard form.
\frac{\sqrt{3}b}{\sqrt{3}}=\frac{-a+5\sqrt{3}+3}{\sqrt{3}}
Divide both sides by \sqrt{3}.
b=\frac{-a+5\sqrt{3}+3}{\sqrt{3}}
Dividing by \sqrt{3} undoes the multiplication by \sqrt{3}.
b=\frac{\sqrt{3}\left(-a+5\sqrt{3}+3\right)}{3}
Divide 3+5\sqrt{3}-a by \sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}