Skip to main content
Differentiate w.r.t. a
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\mathrm{d}}{\mathrm{d}a}(9a^{3}-5a\sqrt{a}+\frac{3}{a}\sqrt{4a^{5}})
Calculate the square root of 81 and get 9.
\frac{\mathrm{d}}{\mathrm{d}a}(9a^{3}-5a\sqrt{a}+\frac{3\sqrt{4a^{5}}}{a})
Express \frac{3}{a}\sqrt{4a^{5}} as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{9a^{3}a}{a}-5a\sqrt{a}+\frac{3\sqrt{4a^{5}}}{a})
To add or subtract expressions, expand them to make their denominators the same. Multiply 9a^{3} times \frac{a}{a}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{9a^{3}a+3\sqrt{4a^{5}}}{a}-5a\sqrt{a})
Since \frac{9a^{3}a}{a} and \frac{3\sqrt{4a^{5}}}{a} have the same denominator, add them by adding their numerators.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{9a^{4}+6a^{\frac{5}{2}}}{a}-5a\sqrt{a})
Do the multiplications in 9a^{3}a+3\sqrt{4a^{5}}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{3\left(3a^{\frac{3}{2}}+2\right)a^{\frac{5}{2}}}{a}-5a\sqrt{a})
Factor the expressions that are not already factored in \frac{9a^{4}+6a^{\frac{5}{2}}}{a}.
\frac{\mathrm{d}}{\mathrm{d}a}(3a^{\frac{3}{2}}\left(3a^{\frac{3}{2}}+2\right)-5a\sqrt{a})
Cancel out a in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}a}(9a^{3}+6a^{\frac{3}{2}}-5a\sqrt{a})
Expand the expression.
3\times 9a^{3-1}+\frac{3}{2}\times 6a^{\frac{3}{2}-1}+\left(-5\sqrt{a}\right)a^{1-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
27a^{3-1}+\frac{3}{2}\times 6a^{\frac{3}{2}-1}+\left(-5\sqrt{a}\right)a^{1-1}
Multiply 3 times 9.
27a^{2}+\frac{3}{2}\times 6a^{\frac{3}{2}-1}+\left(-5\sqrt{a}\right)a^{1-1}
Subtract 1 from 3.
27a^{2}+9a^{\frac{3}{2}-1}+\left(-5\sqrt{a}\right)a^{1-1}
Multiply \frac{3}{2} times 6.
27a^{2}+9\sqrt{a}+\left(-5\sqrt{a}\right)a^{1-1}
Subtract 1 from \frac{3}{2}.
27a^{2}+9\sqrt{a}+\left(-5\sqrt{a}\right)a^{0}
Subtract 1 from 1.
27a^{2}+9\sqrt{a}+\left(-5\sqrt{a}\right)\times 1
For any term t except 0, t^{0}=1.
27a^{2}+9\sqrt{a}-5\sqrt{a}
For any term t, t\times 1=t and 1t=t.