Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

4\sqrt{5}-\left(\sqrt{\frac{3\times 5+1}{5}}+\frac{5}{4}\sqrt{45}\right)
Factor 80=4^{2}\times 5. Rewrite the square root of the product \sqrt{4^{2}\times 5} as the product of square roots \sqrt{4^{2}}\sqrt{5}. Take the square root of 4^{2}.
4\sqrt{5}-\left(\sqrt{\frac{15+1}{5}}+\frac{5}{4}\sqrt{45}\right)
Multiply 3 and 5 to get 15.
4\sqrt{5}-\left(\sqrt{\frac{16}{5}}+\frac{5}{4}\sqrt{45}\right)
Add 15 and 1 to get 16.
4\sqrt{5}-\left(\frac{\sqrt{16}}{\sqrt{5}}+\frac{5}{4}\sqrt{45}\right)
Rewrite the square root of the division \sqrt{\frac{16}{5}} as the division of square roots \frac{\sqrt{16}}{\sqrt{5}}.
4\sqrt{5}-\left(\frac{4}{\sqrt{5}}+\frac{5}{4}\sqrt{45}\right)
Calculate the square root of 16 and get 4.
4\sqrt{5}-\left(\frac{4\sqrt{5}}{\left(\sqrt{5}\right)^{2}}+\frac{5}{4}\sqrt{45}\right)
Rationalize the denominator of \frac{4}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
4\sqrt{5}-\left(\frac{4\sqrt{5}}{5}+\frac{5}{4}\sqrt{45}\right)
The square of \sqrt{5} is 5.
4\sqrt{5}-\left(\frac{4\sqrt{5}}{5}+\frac{5}{4}\times 3\sqrt{5}\right)
Factor 45=3^{2}\times 5. Rewrite the square root of the product \sqrt{3^{2}\times 5} as the product of square roots \sqrt{3^{2}}\sqrt{5}. Take the square root of 3^{2}.
4\sqrt{5}-\left(\frac{4\sqrt{5}}{5}+\frac{5\times 3}{4}\sqrt{5}\right)
Express \frac{5}{4}\times 3 as a single fraction.
4\sqrt{5}-\left(\frac{4\sqrt{5}}{5}+\frac{15}{4}\sqrt{5}\right)
Multiply 5 and 3 to get 15.
4\sqrt{5}-\frac{91}{20}\sqrt{5}
Combine \frac{4\sqrt{5}}{5} and \frac{15}{4}\sqrt{5} to get \frac{91}{20}\sqrt{5}.
-\frac{11}{20}\sqrt{5}
Combine 4\sqrt{5} and -\frac{91}{20}\sqrt{5} to get -\frac{11}{20}\sqrt{5}.