Evaluate
\frac{\sqrt{5}}{500}\approx 0.004472136
Share
Copied to clipboard
\sqrt{80\times \frac{1}{1000000}}-\sqrt{20\times 10^{-6}}
Calculate 10 to the power of -6 and get \frac{1}{1000000}.
\sqrt{\frac{1}{12500}}-\sqrt{20\times 10^{-6}}
Multiply 80 and \frac{1}{1000000} to get \frac{1}{12500}.
\frac{\sqrt{1}}{\sqrt{12500}}-\sqrt{20\times 10^{-6}}
Rewrite the square root of the division \sqrt{\frac{1}{12500}} as the division of square roots \frac{\sqrt{1}}{\sqrt{12500}}.
\frac{1}{\sqrt{12500}}-\sqrt{20\times 10^{-6}}
Calculate the square root of 1 and get 1.
\frac{1}{50\sqrt{5}}-\sqrt{20\times 10^{-6}}
Factor 12500=50^{2}\times 5. Rewrite the square root of the product \sqrt{50^{2}\times 5} as the product of square roots \sqrt{50^{2}}\sqrt{5}. Take the square root of 50^{2}.
\frac{\sqrt{5}}{50\left(\sqrt{5}\right)^{2}}-\sqrt{20\times 10^{-6}}
Rationalize the denominator of \frac{1}{50\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\sqrt{5}}{50\times 5}-\sqrt{20\times 10^{-6}}
The square of \sqrt{5} is 5.
\frac{\sqrt{5}}{250}-\sqrt{20\times 10^{-6}}
Multiply 50 and 5 to get 250.
\frac{\sqrt{5}}{250}-\sqrt{20\times \frac{1}{1000000}}
Calculate 10 to the power of -6 and get \frac{1}{1000000}.
\frac{\sqrt{5}}{250}-\sqrt{\frac{1}{50000}}
Multiply 20 and \frac{1}{1000000} to get \frac{1}{50000}.
\frac{\sqrt{5}}{250}-\frac{\sqrt{1}}{\sqrt{50000}}
Rewrite the square root of the division \sqrt{\frac{1}{50000}} as the division of square roots \frac{\sqrt{1}}{\sqrt{50000}}.
\frac{\sqrt{5}}{250}-\frac{1}{\sqrt{50000}}
Calculate the square root of 1 and get 1.
\frac{\sqrt{5}}{250}-\frac{1}{100\sqrt{5}}
Factor 50000=100^{2}\times 5. Rewrite the square root of the product \sqrt{100^{2}\times 5} as the product of square roots \sqrt{100^{2}}\sqrt{5}. Take the square root of 100^{2}.
\frac{\sqrt{5}}{250}-\frac{\sqrt{5}}{100\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{1}{100\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\sqrt{5}}{250}-\frac{\sqrt{5}}{100\times 5}
The square of \sqrt{5} is 5.
\frac{\sqrt{5}}{250}-\frac{\sqrt{5}}{500}
Multiply 100 and 5 to get 500.
\frac{2\sqrt{5}}{500}-\frac{\sqrt{5}}{500}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 250 and 500 is 500. Multiply \frac{\sqrt{5}}{250} times \frac{2}{2}.
\frac{2\sqrt{5}-\sqrt{5}}{500}
Since \frac{2\sqrt{5}}{500} and \frac{\sqrt{5}}{500} have the same denominator, subtract them by subtracting their numerators.
\frac{\sqrt{5}}{500}
Do the calculations in 2\sqrt{5}-\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}