Solve for y
y=3
Graph
Share
Copied to clipboard
\left(\sqrt{8y+4}\right)^{2}=\left(\sqrt{7y+7}\right)^{2}
Square both sides of the equation.
8y+4=\left(\sqrt{7y+7}\right)^{2}
Calculate \sqrt{8y+4} to the power of 2 and get 8y+4.
8y+4=7y+7
Calculate \sqrt{7y+7} to the power of 2 and get 7y+7.
8y+4-7y=7
Subtract 7y from both sides.
y+4=7
Combine 8y and -7y to get y.
y=7-4
Subtract 4 from both sides.
y=3
Subtract 4 from 7 to get 3.
\sqrt{8\times 3+4}=\sqrt{7\times 3+7}
Substitute 3 for y in the equation \sqrt{8y+4}=\sqrt{7y+7}.
2\times 7^{\frac{1}{2}}=2\times 7^{\frac{1}{2}}
Simplify. The value y=3 satisfies the equation.
y=3
Equation \sqrt{8y+4}=\sqrt{7y+7} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}