Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

2\sqrt{2}-\frac{1}{8}\sqrt{48}-\left(\frac{2}{3}\sqrt{\frac{4\times 2+1}{2}}-2\sqrt{\frac{3}{4}}\right)
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
2\sqrt{2}-\frac{1}{8}\times 4\sqrt{3}-\left(\frac{2}{3}\sqrt{\frac{4\times 2+1}{2}}-2\sqrt{\frac{3}{4}}\right)
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
2\sqrt{2}+\frac{-4}{8}\sqrt{3}-\left(\frac{2}{3}\sqrt{\frac{4\times 2+1}{2}}-2\sqrt{\frac{3}{4}}\right)
Express -\frac{1}{8}\times 4 as a single fraction.
2\sqrt{2}-\frac{1}{2}\sqrt{3}-\left(\frac{2}{3}\sqrt{\frac{4\times 2+1}{2}}-2\sqrt{\frac{3}{4}}\right)
Reduce the fraction \frac{-4}{8} to lowest terms by extracting and canceling out 4.
2\sqrt{2}-\frac{1}{2}\sqrt{3}-\left(\frac{2}{3}\sqrt{\frac{8+1}{2}}-2\sqrt{\frac{3}{4}}\right)
Multiply 4 and 2 to get 8.
2\sqrt{2}-\frac{1}{2}\sqrt{3}-\left(\frac{2}{3}\sqrt{\frac{9}{2}}-2\sqrt{\frac{3}{4}}\right)
Add 8 and 1 to get 9.
2\sqrt{2}-\frac{1}{2}\sqrt{3}-\left(\frac{2}{3}\times \frac{\sqrt{9}}{\sqrt{2}}-2\sqrt{\frac{3}{4}}\right)
Rewrite the square root of the division \sqrt{\frac{9}{2}} as the division of square roots \frac{\sqrt{9}}{\sqrt{2}}.
2\sqrt{2}-\frac{1}{2}\sqrt{3}-\left(\frac{2}{3}\times \frac{3}{\sqrt{2}}-2\sqrt{\frac{3}{4}}\right)
Calculate the square root of 9 and get 3.
2\sqrt{2}-\frac{1}{2}\sqrt{3}-\left(\frac{2}{3}\times \frac{3\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-2\sqrt{\frac{3}{4}}\right)
Rationalize the denominator of \frac{3}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
2\sqrt{2}-\frac{1}{2}\sqrt{3}-\left(\frac{2}{3}\times \frac{3\sqrt{2}}{2}-2\sqrt{\frac{3}{4}}\right)
The square of \sqrt{2} is 2.
2\sqrt{2}-\frac{1}{2}\sqrt{3}-\left(\frac{2\times 3\sqrt{2}}{3\times 2}-2\sqrt{\frac{3}{4}}\right)
Multiply \frac{2}{3} times \frac{3\sqrt{2}}{2} by multiplying numerator times numerator and denominator times denominator.
2\sqrt{2}-\frac{1}{2}\sqrt{3}-\left(\sqrt{2}-2\sqrt{\frac{3}{4}}\right)
Cancel out 2\times 3 in both numerator and denominator.
2\sqrt{2}-\frac{1}{2}\sqrt{3}-\left(\sqrt{2}-2\times \frac{\sqrt{3}}{\sqrt{4}}\right)
Rewrite the square root of the division \sqrt{\frac{3}{4}} as the division of square roots \frac{\sqrt{3}}{\sqrt{4}}.
2\sqrt{2}-\frac{1}{2}\sqrt{3}-\left(\sqrt{2}-2\times \frac{\sqrt{3}}{2}\right)
Calculate the square root of 4 and get 2.
2\sqrt{2}-\frac{1}{2}\sqrt{3}-\left(\sqrt{2}-\sqrt{3}\right)
Cancel out 2 and 2.
2\sqrt{2}-\frac{1}{2}\sqrt{3}-\sqrt{2}-\left(-\sqrt{3}\right)
To find the opposite of \sqrt{2}-\sqrt{3}, find the opposite of each term.
\sqrt{2}-\frac{1}{2}\sqrt{3}-\left(-\sqrt{3}\right)
Combine 2\sqrt{2} and -\sqrt{2} to get \sqrt{2}.
\sqrt{2}-\frac{1}{2}\sqrt{3}+\sqrt{3}
The opposite of -\sqrt{3} is \sqrt{3}.
\sqrt{2}+\frac{1}{2}\sqrt{3}
Combine -\frac{1}{2}\sqrt{3} and \sqrt{3} to get \frac{1}{2}\sqrt{3}.