Evaluate
\frac{\sqrt{3}}{2}+\sqrt{2}\approx 2.280238966
Factor
\frac{\sqrt{3} + 2 \sqrt{2}}{2} = 2.2802389661575337
Share
Copied to clipboard
2\sqrt{2}-\frac{1}{8}\sqrt{48}-\left(\frac{2}{3}\sqrt{\frac{4\times 2+1}{2}}-2\sqrt{\frac{3}{4}}\right)
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
2\sqrt{2}-\frac{1}{8}\times 4\sqrt{3}-\left(\frac{2}{3}\sqrt{\frac{4\times 2+1}{2}}-2\sqrt{\frac{3}{4}}\right)
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
2\sqrt{2}+\frac{-4}{8}\sqrt{3}-\left(\frac{2}{3}\sqrt{\frac{4\times 2+1}{2}}-2\sqrt{\frac{3}{4}}\right)
Express -\frac{1}{8}\times 4 as a single fraction.
2\sqrt{2}-\frac{1}{2}\sqrt{3}-\left(\frac{2}{3}\sqrt{\frac{4\times 2+1}{2}}-2\sqrt{\frac{3}{4}}\right)
Reduce the fraction \frac{-4}{8} to lowest terms by extracting and canceling out 4.
2\sqrt{2}-\frac{1}{2}\sqrt{3}-\left(\frac{2}{3}\sqrt{\frac{8+1}{2}}-2\sqrt{\frac{3}{4}}\right)
Multiply 4 and 2 to get 8.
2\sqrt{2}-\frac{1}{2}\sqrt{3}-\left(\frac{2}{3}\sqrt{\frac{9}{2}}-2\sqrt{\frac{3}{4}}\right)
Add 8 and 1 to get 9.
2\sqrt{2}-\frac{1}{2}\sqrt{3}-\left(\frac{2}{3}\times \frac{\sqrt{9}}{\sqrt{2}}-2\sqrt{\frac{3}{4}}\right)
Rewrite the square root of the division \sqrt{\frac{9}{2}} as the division of square roots \frac{\sqrt{9}}{\sqrt{2}}.
2\sqrt{2}-\frac{1}{2}\sqrt{3}-\left(\frac{2}{3}\times \frac{3}{\sqrt{2}}-2\sqrt{\frac{3}{4}}\right)
Calculate the square root of 9 and get 3.
2\sqrt{2}-\frac{1}{2}\sqrt{3}-\left(\frac{2}{3}\times \frac{3\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-2\sqrt{\frac{3}{4}}\right)
Rationalize the denominator of \frac{3}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
2\sqrt{2}-\frac{1}{2}\sqrt{3}-\left(\frac{2}{3}\times \frac{3\sqrt{2}}{2}-2\sqrt{\frac{3}{4}}\right)
The square of \sqrt{2} is 2.
2\sqrt{2}-\frac{1}{2}\sqrt{3}-\left(\frac{2\times 3\sqrt{2}}{3\times 2}-2\sqrt{\frac{3}{4}}\right)
Multiply \frac{2}{3} times \frac{3\sqrt{2}}{2} by multiplying numerator times numerator and denominator times denominator.
2\sqrt{2}-\frac{1}{2}\sqrt{3}-\left(\sqrt{2}-2\sqrt{\frac{3}{4}}\right)
Cancel out 2\times 3 in both numerator and denominator.
2\sqrt{2}-\frac{1}{2}\sqrt{3}-\left(\sqrt{2}-2\times \frac{\sqrt{3}}{\sqrt{4}}\right)
Rewrite the square root of the division \sqrt{\frac{3}{4}} as the division of square roots \frac{\sqrt{3}}{\sqrt{4}}.
2\sqrt{2}-\frac{1}{2}\sqrt{3}-\left(\sqrt{2}-2\times \frac{\sqrt{3}}{2}\right)
Calculate the square root of 4 and get 2.
2\sqrt{2}-\frac{1}{2}\sqrt{3}-\left(\sqrt{2}-\sqrt{3}\right)
Cancel out 2 and 2.
2\sqrt{2}-\frac{1}{2}\sqrt{3}-\sqrt{2}-\left(-\sqrt{3}\right)
To find the opposite of \sqrt{2}-\sqrt{3}, find the opposite of each term.
\sqrt{2}-\frac{1}{2}\sqrt{3}-\left(-\sqrt{3}\right)
Combine 2\sqrt{2} and -\sqrt{2} to get \sqrt{2}.
\sqrt{2}-\frac{1}{2}\sqrt{3}+\sqrt{3}
The opposite of -\sqrt{3} is \sqrt{3}.
\sqrt{2}+\frac{1}{2}\sqrt{3}
Combine -\frac{1}{2}\sqrt{3} and \sqrt{3} to get \frac{1}{2}\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}