Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

2\sqrt{2}\left(8\sqrt{5}+2\sqrt{7}-\sqrt{2}+8\right)
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
16\sqrt{2}\sqrt{5}+4\sqrt{2}\sqrt{7}-2\left(\sqrt{2}\right)^{2}+16\sqrt{2}
Use the distributive property to multiply 2\sqrt{2} by 8\sqrt{5}+2\sqrt{7}-\sqrt{2}+8.
16\sqrt{10}+4\sqrt{2}\sqrt{7}-2\left(\sqrt{2}\right)^{2}+16\sqrt{2}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
16\sqrt{10}+4\sqrt{14}-2\left(\sqrt{2}\right)^{2}+16\sqrt{2}
To multiply \sqrt{2} and \sqrt{7}, multiply the numbers under the square root.
16\sqrt{10}+4\sqrt{14}-2\times 2+16\sqrt{2}
The square of \sqrt{2} is 2.
16\sqrt{10}+4\sqrt{14}-4+16\sqrt{2}
Multiply -2 and 2 to get -4.