Evaluate
8\sqrt{3}-9\sqrt{2}\approx 1.128484399
Share
Copied to clipboard
2\sqrt{2}\sqrt{6}-3\sqrt{6}\sqrt{3}+2\sqrt{12}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
2\sqrt{2}\sqrt{2}\sqrt{3}-3\sqrt{6}\sqrt{3}+2\sqrt{12}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
2\times 2\sqrt{3}-3\sqrt{6}\sqrt{3}+2\sqrt{12}
Multiply \sqrt{2} and \sqrt{2} to get 2.
2\times 2\sqrt{3}-3\sqrt{3}\sqrt{2}\sqrt{3}+2\sqrt{12}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
2\times 2\sqrt{3}-3\times 3\sqrt{2}+2\sqrt{12}
Multiply \sqrt{3} and \sqrt{3} to get 3.
2\times 2\sqrt{3}-9\sqrt{2}+2\sqrt{12}
Multiply 3 and 3 to get 9.
2\times 2\sqrt{3}-9\sqrt{2}+2\times 2\sqrt{3}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
2\times 2\sqrt{3}-9\sqrt{2}+4\sqrt{3}
Multiply 2 and 2 to get 4.
4\sqrt{3}-9\sqrt{2}+4\sqrt{3}
Multiply 2 and 2 to get 4.
8\sqrt{3}-9\sqrt{2}
Combine 4\sqrt{3} and 4\sqrt{3} to get 8\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}