\sqrt { 8 } + \sqrt { 2 } + \sqrt { 72 } \quad \text { (f) } \sqrt { 300 }
Evaluate
3\left(20\sqrt{6}f+\sqrt{2}\right)
Differentiate w.r.t. f
60 \sqrt{6} = 146.969384567
Quiz
5 problems similar to:
\sqrt { 8 } + \sqrt { 2 } + \sqrt { 72 } \quad \text { (f) } \sqrt { 300 }
Share
Copied to clipboard
2\sqrt{2}+\sqrt{2}+\sqrt{72}f\sqrt{300}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
3\sqrt{2}+\sqrt{72}f\sqrt{300}
Combine 2\sqrt{2} and \sqrt{2} to get 3\sqrt{2}.
3\sqrt{2}+6\sqrt{2}f\sqrt{300}
Factor 72=6^{2}\times 2. Rewrite the square root of the product \sqrt{6^{2}\times 2} as the product of square roots \sqrt{6^{2}}\sqrt{2}. Take the square root of 6^{2}.
3\sqrt{2}+6\sqrt{2}f\times 10\sqrt{3}
Factor 300=10^{2}\times 3. Rewrite the square root of the product \sqrt{10^{2}\times 3} as the product of square roots \sqrt{10^{2}}\sqrt{3}. Take the square root of 10^{2}.
3\sqrt{2}+60\sqrt{2}f\sqrt{3}
Multiply 6 and 10 to get 60.
3\sqrt{2}+60\sqrt{6}f
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}