Solve for a
a=\frac{\sqrt{2}\left(21-4b\right)}{4}
Solve for b
b=-\frac{\sqrt{2}a}{2}+\frac{21}{4}
Share
Copied to clipboard
2\sqrt{2}+\sqrt{18}+\sqrt{\frac{1}{8}}=a+b\sqrt{2}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
2\sqrt{2}+3\sqrt{2}+\sqrt{\frac{1}{8}}=a+b\sqrt{2}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
5\sqrt{2}+\sqrt{\frac{1}{8}}=a+b\sqrt{2}
Combine 2\sqrt{2} and 3\sqrt{2} to get 5\sqrt{2}.
5\sqrt{2}+\frac{\sqrt{1}}{\sqrt{8}}=a+b\sqrt{2}
Rewrite the square root of the division \sqrt{\frac{1}{8}} as the division of square roots \frac{\sqrt{1}}{\sqrt{8}}.
5\sqrt{2}+\frac{1}{\sqrt{8}}=a+b\sqrt{2}
Calculate the square root of 1 and get 1.
5\sqrt{2}+\frac{1}{2\sqrt{2}}=a+b\sqrt{2}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
5\sqrt{2}+\frac{\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}=a+b\sqrt{2}
Rationalize the denominator of \frac{1}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
5\sqrt{2}+\frac{\sqrt{2}}{2\times 2}=a+b\sqrt{2}
The square of \sqrt{2} is 2.
5\sqrt{2}+\frac{\sqrt{2}}{4}=a+b\sqrt{2}
Multiply 2 and 2 to get 4.
\frac{21}{4}\sqrt{2}=a+b\sqrt{2}
Combine 5\sqrt{2} and \frac{\sqrt{2}}{4} to get \frac{21}{4}\sqrt{2}.
a+b\sqrt{2}=\frac{21}{4}\sqrt{2}
Swap sides so that all variable terms are on the left hand side.
a=\frac{21}{4}\sqrt{2}-b\sqrt{2}
Subtract b\sqrt{2} from both sides.
a=-\sqrt{2}b+\frac{21}{4}\sqrt{2}
Reorder the terms.
2\sqrt{2}+\sqrt{18}+\sqrt{\frac{1}{8}}=a+b\sqrt{2}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
2\sqrt{2}+3\sqrt{2}+\sqrt{\frac{1}{8}}=a+b\sqrt{2}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
5\sqrt{2}+\sqrt{\frac{1}{8}}=a+b\sqrt{2}
Combine 2\sqrt{2} and 3\sqrt{2} to get 5\sqrt{2}.
5\sqrt{2}+\frac{\sqrt{1}}{\sqrt{8}}=a+b\sqrt{2}
Rewrite the square root of the division \sqrt{\frac{1}{8}} as the division of square roots \frac{\sqrt{1}}{\sqrt{8}}.
5\sqrt{2}+\frac{1}{\sqrt{8}}=a+b\sqrt{2}
Calculate the square root of 1 and get 1.
5\sqrt{2}+\frac{1}{2\sqrt{2}}=a+b\sqrt{2}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
5\sqrt{2}+\frac{\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}=a+b\sqrt{2}
Rationalize the denominator of \frac{1}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
5\sqrt{2}+\frac{\sqrt{2}}{2\times 2}=a+b\sqrt{2}
The square of \sqrt{2} is 2.
5\sqrt{2}+\frac{\sqrt{2}}{4}=a+b\sqrt{2}
Multiply 2 and 2 to get 4.
\frac{21}{4}\sqrt{2}=a+b\sqrt{2}
Combine 5\sqrt{2} and \frac{\sqrt{2}}{4} to get \frac{21}{4}\sqrt{2}.
a+b\sqrt{2}=\frac{21}{4}\sqrt{2}
Swap sides so that all variable terms are on the left hand side.
b\sqrt{2}=\frac{21}{4}\sqrt{2}-a
Subtract a from both sides.
\sqrt{2}b=-a+\frac{21\sqrt{2}}{4}
The equation is in standard form.
\frac{\sqrt{2}b}{\sqrt{2}}=\frac{-a+\frac{21\sqrt{2}}{4}}{\sqrt{2}}
Divide both sides by \sqrt{2}.
b=\frac{-a+\frac{21\sqrt{2}}{4}}{\sqrt{2}}
Dividing by \sqrt{2} undoes the multiplication by \sqrt{2}.
b=-\frac{\sqrt{2}a}{2}+\frac{21}{4}
Divide \frac{21\sqrt{2}}{4}-a by \sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}