Evaluate
2\sqrt{2}+22\approx 24.828427125
Share
Copied to clipboard
\sqrt{64}+\sqrt{36}-\sqrt{1}\sqrt{16}+\sqrt{8}+8+\sqrt{4^{2}}
Calculate 8 to the power of 2 and get 64.
8+\sqrt{36}-\sqrt{1}\sqrt{16}+\sqrt{8}+8+\sqrt{4^{2}}
Calculate the square root of 64 and get 8.
8+6-\sqrt{1}\sqrt{16}+\sqrt{8}+8+\sqrt{4^{2}}
Calculate the square root of 36 and get 6.
14-\sqrt{1}\sqrt{16}+\sqrt{8}+8+\sqrt{4^{2}}
Add 8 and 6 to get 14.
14-\sqrt{1}\sqrt{1}\sqrt{16}+\sqrt{8}+8+\sqrt{4^{2}}
Factor 16=1\times 16. Rewrite the square root of the product \sqrt{1\times 16} as the product of square roots \sqrt{1}\sqrt{16}.
14-\sqrt{16}+\sqrt{8}+8+\sqrt{4^{2}}
Multiply \sqrt{1} and \sqrt{1} to get 1.
14-1\times 4+\sqrt{8}+8+\sqrt{4^{2}}
Calculate the square root of 16 and get 4.
14-4+\sqrt{8}+8+\sqrt{4^{2}}
Multiply 1 and 4 to get 4.
10+\sqrt{8}+8+\sqrt{4^{2}}
Subtract 4 from 14 to get 10.
10+2\sqrt{2}+8+\sqrt{4^{2}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
18+2\sqrt{2}+\sqrt{4^{2}}
Add 10 and 8 to get 18.
18+2\sqrt{2}+\sqrt{16}
Calculate 4 to the power of 2 and get 16.
18+2\sqrt{2}+4
Calculate the square root of 16 and get 4.
22+2\sqrt{2}
Add 18 and 4 to get 22.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}