Skip to main content
Evaluate
Tick mark Image

Share

\sqrt{\frac{3100\times 3000}{3.14}+\left(152+15\times 2\right)^{1}}
Multiply 775 and 4 to get 3100.
\sqrt{\frac{9300000}{3.14}+\left(152+15\times 2\right)^{1}}
Multiply 3100 and 3000 to get 9300000.
\sqrt{\frac{930000000}{314}+\left(152+15\times 2\right)^{1}}
Expand \frac{9300000}{3.14} by multiplying both numerator and the denominator by 100.
\sqrt{\frac{465000000}{157}+\left(152+15\times 2\right)^{1}}
Reduce the fraction \frac{930000000}{314} to lowest terms by extracting and canceling out 2.
\sqrt{\frac{465000000}{157}+\left(152+30\right)^{1}}
Multiply 15 and 2 to get 30.
\sqrt{\frac{465000000}{157}+182^{1}}
Add 152 and 30 to get 182.
\sqrt{\frac{465000000}{157}+182}
Calculate 182 to the power of 1 and get 182.
\sqrt{\frac{465028574}{157}}
Add \frac{465000000}{157} and 182 to get \frac{465028574}{157}.
\frac{\sqrt{465028574}}{\sqrt{157}}
Rewrite the square root of the division \sqrt{\frac{465028574}{157}} as the division of square roots \frac{\sqrt{465028574}}{\sqrt{157}}.
\frac{\sqrt{465028574}\sqrt{157}}{\left(\sqrt{157}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{465028574}}{\sqrt{157}} by multiplying numerator and denominator by \sqrt{157}.
\frac{\sqrt{465028574}\sqrt{157}}{157}
The square of \sqrt{157} is 157.
\frac{\sqrt{73009486118}}{157}
To multiply \sqrt{465028574} and \sqrt{157}, multiply the numbers under the square root.