Solve for y
y=7
Graph
Share
Copied to clipboard
\left(\sqrt{7y-1}\right)^{2}=\left(\sqrt{9y-15}\right)^{2}
Square both sides of the equation.
7y-1=\left(\sqrt{9y-15}\right)^{2}
Calculate \sqrt{7y-1} to the power of 2 and get 7y-1.
7y-1=9y-15
Calculate \sqrt{9y-15} to the power of 2 and get 9y-15.
7y-1-9y=-15
Subtract 9y from both sides.
-2y-1=-15
Combine 7y and -9y to get -2y.
-2y=-15+1
Add 1 to both sides.
-2y=-14
Add -15 and 1 to get -14.
y=\frac{-14}{-2}
Divide both sides by -2.
y=7
Divide -14 by -2 to get 7.
\sqrt{7\times 7-1}=\sqrt{9\times 7-15}
Substitute 7 for y in the equation \sqrt{7y-1}=\sqrt{9y-15}.
4\times 3^{\frac{1}{2}}=4\times 3^{\frac{1}{2}}
Simplify. The value y=7 satisfies the equation.
y=7
Equation \sqrt{7y-1}=\sqrt{9y-15} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}