Solve for x
x=10
Graph
Share
Copied to clipboard
\sqrt{7x-21}=2x-20+7
Subtract -7 from both sides of the equation.
\sqrt{7x-21}=2x-13
Add -20 and 7 to get -13.
\left(\sqrt{7x-21}\right)^{2}=\left(2x-13\right)^{2}
Square both sides of the equation.
7x-21=\left(2x-13\right)^{2}
Calculate \sqrt{7x-21} to the power of 2 and get 7x-21.
7x-21=4x^{2}-52x+169
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-13\right)^{2}.
7x-21-4x^{2}=-52x+169
Subtract 4x^{2} from both sides.
7x-21-4x^{2}+52x=169
Add 52x to both sides.
59x-21-4x^{2}=169
Combine 7x and 52x to get 59x.
59x-21-4x^{2}-169=0
Subtract 169 from both sides.
59x-190-4x^{2}=0
Subtract 169 from -21 to get -190.
-4x^{2}+59x-190=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=59 ab=-4\left(-190\right)=760
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -4x^{2}+ax+bx-190. To find a and b, set up a system to be solved.
1,760 2,380 4,190 5,152 8,95 10,76 19,40 20,38
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 760.
1+760=761 2+380=382 4+190=194 5+152=157 8+95=103 10+76=86 19+40=59 20+38=58
Calculate the sum for each pair.
a=40 b=19
The solution is the pair that gives sum 59.
\left(-4x^{2}+40x\right)+\left(19x-190\right)
Rewrite -4x^{2}+59x-190 as \left(-4x^{2}+40x\right)+\left(19x-190\right).
4x\left(-x+10\right)-19\left(-x+10\right)
Factor out 4x in the first and -19 in the second group.
\left(-x+10\right)\left(4x-19\right)
Factor out common term -x+10 by using distributive property.
x=10 x=\frac{19}{4}
To find equation solutions, solve -x+10=0 and 4x-19=0.
\sqrt{7\times 10-21}-7=2\times 10-20
Substitute 10 for x in the equation \sqrt{7x-21}-7=2x-20.
0=0
Simplify. The value x=10 satisfies the equation.
\sqrt{7\times \frac{19}{4}-21}-7=2\times \frac{19}{4}-20
Substitute \frac{19}{4} for x in the equation \sqrt{7x-21}-7=2x-20.
-\frac{7}{2}=-\frac{21}{2}
Simplify. The value x=\frac{19}{4} does not satisfy the equation.
x=10
Equation \sqrt{7x-21}=2x-13 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}